【非侵入式负荷监测】低采样率电动汽车充电的无训练非侵入式负荷监测(Matlab代码实现)

简介: 【非侵入式负荷监测】低采样率电动汽车充电的无训练非侵入式负荷监测(Matlab代码实现)

💥1 概述

摘要非侵入式负载监测(NILM)是智能电网和智能家居中的一个重要课题。已经提出了许多能量分解算法来从一个聚集的信号观测中检测各种单独的设备。


然而,由于电动汽车在家充电是最近才出现的,因此很少有研究在住宅环境中对插电式电动汽车(EV)充电进行能量分解的工作。最近的研究表明,电动汽车充电对智能电网有很大影响,尤其是在夏季。因此,电动汽车充电监测已成为能源分解中一个更为重要和紧迫的缺失部分。在本文中,我们提出了一种新的方法来从聚集的实际功率信号中分解EV充电信号。所提出的方法可以有效地减轻来自空调(AC)的干扰,在存在AC电力信号的情况下实现准确的EV充电检测和能量估计。此外,所提出的算法不需要训练,需要较轻的计算负载,提供较高的估计精度,并且适用于以1/60 Hz的低采样率记录的数据。当该算法在大约一整年(总共125个月的数据)内对11所房屋记录的真实世界数据进行测试时,估计电动汽车充电能耗的平均误差为15.7 kwh/月(而电动汽车充电的真实平均能耗为208.5 kwh/),分解电动汽车充电负载信号的平均归一化均方误差为0.19。


文献来源:


📚2 运行结果

部分代码:

% Reference:
%   Zhilin Zhang, Jae Hyun Son, Ying Li, Mark Trayer, Zhouyue Pi, 
%   Dong Yoon Hwang, Joong Ki Moon, Training-Free Non-Intrusive Load 
%   Monitoring of Electric Vehicle Charging with Low Sampling Rate, 
%   The 40th Annual Conference of the IEEE Industrial Electronics Society 
%   (IECON 2014), Oct.29-Nov.1, 2014, Dallas, TX
if iscolumn(orgAgg), orgAgg = orgAgg'; end;
EVest = zeros(size(orgAgg));
if isempty(contextInfo.EVamplitude), 
    EVAMP = 3000;
else
    EVAMP = contextInfo.EVamplitude;
end
% Although one day has 1440 samples, we may want to estimate current day
% plus the early morning of the next day (because EV signal can happen 
% around mid-night). So, orgAgg can be a vector including samples from 
% current day and the early morning of the next day. Thus DAYLEN may be 
% larger than 1440. However, in this simulation, we only focus on exactly 
% one day. So, the length of orgAgg is 1440.
DAYLEN = length(orgAgg);     
%=====================================================================
% 1. Remove baseline noise
%    This can enhance the robustness (Sometimes the baseline noise is 
%    very large, thus making the pre-set threshold value is not suitable). 
%    The baseline noise will be further removed at the end of this 
%    algorithm.
%=====================================================================
res = min(orgAgg);  
ts = orgAgg - res;
if verbose, fprintf('\nStep 1: Removed residual noise (%f) \n',res); end;
%=====================================================================
% 2. Thresholding
%=====================================================================
% Set threshold value
% We could set 3000, since EV always has amplitude >3000 W. However, this 
% value will remove many context information (such as AC spikes and lumps),
% which is useful to remove ambiguility. 
THRESHOLD = 2500; 
if verbose, fprintf('Step 2: Calculate threshold value: %f\n',THRESHOLD); end;
% Thresholding
EVsignal = ts;
EVsignal(EVsignal<THRESHOLD) = 0;
% Record the thresholded signal
EV_step2 = EVsignal;      
% =========================================================================
%  3. Use bumpTrainFilter to remove AC spike trains
% =========================================================================
% Obtain segments with amplitude > THRESHOLD
[segment, ~] = getSegment(EVsignal);
if isempty(segment), EVest = zeros(size(ts)); return; end;
% Remove segments with short duration (basically from AC, dryer/oven, etc)
min_shrtDuration = 20;
max_duration = 90;
incrPercentage = 1;
segment_lowthr_info = bumpTrainFilter(segment, min_shrtDuration, max_duration, incrPercentage);
% Reconstruct the signal after filtering bump trains
EV_step3 = getSignal(segment_lowthr_info,EVsignal); 
if isempty(EV_step3), EVest = zeros(size(ts)); return; end;
if verbose, fprintf('Step 3: Running bumpTrainFilter. \n'); end;
% =========================================================================
%  4. Fill the very short gaps between two successive segments
% =========================================================================
gapDistanceMax = 10; 
[EV_step4, segment_lowthr_pit] = pitFilter(EVsignal,segment_lowthr_info,gapDistanceMax);
if verbose, fprintf('Step 4: Running pitFilter. \n'); end;
if verbose,
    set(0, 'DefaultFigurePosition', [300 10 600 700]);
    figure;
    subplot(411); plot(ts); title('Aggregated Signal After Removal Residual');
    subplot(412); plot(EV_step2); title(['Signal After Low Thresholding:',num2str(THRESHOLD)]);
    subplot(413); plot(EV_step3); title('Signal After BumpTrainFilter');
    subplot(414); plot(EV_step4); title('Signal After PitFilter');
end
%=====================================================================
% 5. Determine the type of each segment
%=====================================================================
newSegmentNum = size(segment_lowthr_pit,1);
heightResolution = 2;
differentiateRange = 200;
type = [];    
for k = 1 : newSegmentNum
    segment_study = EV_step4(segment_lowthr_pit(k,1):segment_lowthr_pit(k,2));
    [type(k), temp] = findType(segment_study, heightResolution, differentiateRange);
    changeAmplitude{k} = temp;
end
if verbose, fprintf('Step 5: Classify Segment Type. Type of Each Segment: \n'); disp(type);  end;
%=====================================================================
% 6. Energy disaggregation
%=====================================================================
finalSegmentInfo = [];  % Variable storing information of the EV segments.
                        % The (i,1)-th entry records the beginning
                        % location of the i-th segment. The (i,2)-th entry
                        % records the ending location of the i-th segment.
                        % The (i,3)-th entry records the height of the
                        % segment.
finalSegmentNb = 0;
for k = 1 : newSegmentNum
    if verbose, fprintf('Check No.%d Segment\n',k); end;
    curSegment = orgAgg(segment_lowthr_pit(k,1):segment_lowthr_pit(k,2));
    % Height of curSegment including residual noise
    rawHeight = getHeight(curSegment);
    % Remove approximate local residual noise
    avgNoiseAmplitude = localNoiseAmplitude([segment_lowthr_pit(k,1),segment_lowthr_pit(k,2)], orgAgg);
    curHeight = rawHeight - avgNoiseAmplitude;    
    if type(k) == 0
        % For this type, it is probably the dryer/oven waveforms, which has
        % no sharp drop-off in signal points at some amplitude. However, we
        % need to consider one rare situation, i.e. the almost completely
        % overlapping of EV and dryer/oven waveforms.
        if length(curSegment)<30 | length(curSegment)>300
            % jump to the next segment, thus automatically remove curSegment
        else
            if curHeight > 5500, 
                % construct a square wave with height given
                % by 3500 (or taking from other EV waveforms)
                finalSegmentNb = finalSegmentNb + 1;
                finalSegmentInfo(finalSegmentNb,:) = [segment_lowthr_pit(k,1),segment_lowthr_pit(k,2),EVAMP,type(k)];
            else
                % jump to the next segment, thus automatically removing curSegment
            end
        end
    elseif type(k) == 1
        % For this type, it could be a single EV waveform (with residual
        % noise), an EV waveform overlapping with a narrow dryer/oven
        % waveform or with one or two bumps of AC
        % 
        if length(curSegment) > 300 | curHeight < max(EVAMP - 300, 3000)
            % jump to the next segment, thus automatically removing curSegment
        else
            % Flag to indicate whether curSegment is EV
            curSegmentEV = 1;
            % If curSegmentEV locates between 12pm-10pm (720 - 1320)
            curSegmentLoc1 = segment_lowthr_pit(k,1);
            curSegmentLoc2 = segment_lowthr_pit(k,2);
            if 1 <= curSegmentLoc1 & curSegmentLoc2 <= DAYLEN
                % if surrounding segments are AC spikes, and the top layer
                % of curSegment has no AC spikes (note it should be
                % classified as Type 2, but sometimes when the AC spike
                % number is one or two, and it may be classified as Type 1)
                % Remove dryer/oven waveform around the curSegment (2 hours
                % before and after curSegment)
                studyArea = EVsignal( [max(1,segment_lowthr_pit(k,1)-120) : max(1,segment_lowthr_pit(k,1)-1), ...
                    min(DAYLEN,segment_lowthr_pit(k,2)+1): min(DAYLEN,segment_lowthr_pit(k,2)+120)] );
                [studyArea_filtdryer, ~] = dryerFilter(studyArea);
                [ACseg,~] = getSegment(studyArea_filtdryer);
                % Remove AC spike train
                min_shrtDuration_sur = 25;
                max_duration_sur = min(90,max(min_shrtDuration_sur,length(curSegment)*0.6));
                incrPercentage_sur = 1;
                [~, rmvBumpInfo, removeFlag] = bumpTrainFilter(ACseg, min_shrtDuration_sur, max_duration_sur, incrPercentage_sur);
                if removeFlag & size(rmvBumpInfo,1)> 4
                    % Check if the top layer of curSegment has AC spikes;
                    % if so, then curSegment is EV; otherwise, not EV
                    % get the segment information of the top layer
                    curSegment_topLayer = curSegment;
                    curSegment_topLayer(curSegment_topLayer < getHeight(curSegment)+ 1000) = 0;
                    % -----------------------------------------------------
                    % Decide if the top layer has AC spikes using autocorrelation
                    [ACindicator] = ACdetector(curSegment_topLayer);
                    if ~ACindicator
                            curSegmentEV = 0;
                    end
                else
                    % Check if nearby segments have similar width as
                    % curSegment. If so, curSegment is not EV
                    % Find the left segment closest to curSegment
                    leading_loc2 = max( segment(find(segment(:,2) < segment_lowthr_pit(k,1)),2)   );
                    if ~isempty(leading_loc2)  % if leading_loc2 is empty, then curSegment is at the beginning of this day
                        leading_loc1 = max( segment(find(segment(:,1) < leading_loc2),1) );
                        leading_flag = 1;
                    else
                        leading_flag = 0;
                    end
                    % Find the right segment closest to curSegment
                    following_loc1 = min( segment( find(segment_lowthr_pit(k,2) < segment(:,1)),1) );
                    if ~isempty(following_loc1)  % if following_loc1 is empty, then curSegment is at the end of this day
                        following_loc2 = min( segment( find( following_loc1 < segment(:,2)),2) );
                        following_flag = 1;
                    else
                        following_flag = 0;
                    end
                    if leading_flag & following_flag
                        if length(curSegment)/length(leading_loc1:leading_loc2) < 3 & (segment_lowthr_pit(k,1)-leading_loc2 <= 30) | ...
                                length(curSegment)/length(following_loc1:following_loc2)< 3 & (following_loc1 - segment_lowthr_pit(k,2) <= 30)
                            % if surrounding segments have similar width and close gaps
                            curSegmentEV = 0;
                        end
                    elseif leading_flag
                        if length(curSegment)/length(leading_loc1:leading_loc2) < 3 & (segment_lowthr_pit(k,1)-leading_loc2 <= 30)
                            curSegmentEV = 0;
                        end
                    elseif following_flag
                        if length(curSegment)/length(following_loc1:following_loc2)< 3 & (following_loc1 - segment_lowthr_pit(k,2) <= 30)
                            curSegmentEV = 0;
                        end
                    end
                end
            end
            if curSegmentEV,
                % construct the EV signal
                finalSegmentNb = finalSegmentNb + 1;
                finalSegmentInfo(finalSegmentNb,:) = [segment_lowthr_pit(k,1),segment_lowthr_pit(k,2),curHeight,type(k)];
            end
        end
    elseif type(k) >= 2
        % For this type, it could be an overlap with EV and AC (with other 
        % appliances). We need to determine whether the upper part
        % or the bottom part is an EV waveform
            % determine the up-bound and the bottom-bound of the threshold
            upBound = max(curSegment)-200;
            bottomBound = max( changeAmplitude{k}(1)+200,  getHeight(curSegment) );
            highThreshold = max(5000, changeAmplitude{k}(1)*0.4 + changeAmplitude{k}(2)*0.6);
            if highThreshold <bottomBound  | highThreshold > upBound
                highThreshold = (bottomBound + upBound)/2;
            end
            topSegment = curSegment;  
            topSegment(topSegment<highThreshold) = 0;
            [topSegmentInfo, topSegNum] = getSegment(topSegment);   
        % Filling pits in topSegment with very short duration
        [topSegment2, topSegmentInfo2] = pitFilter(topSegment,topSegmentInfo,10);
        topSegNum2 = size(topSegmentInfo2,1);
        %figure(1);subplot(515); plot(topSegment2); title('Top Part After Filling Pits');
        topSegmentWidthList = diff(topSegmentInfo2');
        if length(curSegment) > 300
            % In this situation, the bottom one is AC part, and thus the top one is EV
            for tsn = 1 : topSegNum2
                % If each segment of the top part is long enough, then it
                % is an EV waveform
                if topSegmentWidthList(tsn) > 20
                    % obtain current top segment associated with curSegment
                    segmentStudy = curSegment(topSegmentInfo2(tsn,1):topSegmentInfo2(tsn,2));   
                    % check if it is a dryer waveform
                    windowLen = length(segmentStudy);   % window length (used to slide the aggregated signal)      
                    thr_crossRate = 5*windowLen/30;     % thresholding for level-crossing counting (a dryer should have larger counting than this value)
                    incremental = 200;                  % value to increase the level for level-crossing counting
                    [dryerFlag,~] = detectDryer(segmentStudy, windowLen, thr_crossRate, incremental); % detect whether dryer exists
                    if ~dryerFlag   % if not dryer, then reconstruct a square signal by using its width and the height
                        % location of beginning and the ending of the top bump in the whole aggregated signal
                        globalLocation = [topSegmentInfo2(tsn,1) + segment_lowthr_pit(k,1)-1, ...
                                          topSegmentInfo2(tsn,2) + segment_lowthr_pit(k,1)-1];
                        % calculate the height of the bump
                        topHeight = getHeight( curSegment(topSegmentInfo2(tsn,1):topSegmentInfo2(tsn,2)));
                        % calculate the height of the bottom bump
                        bottomHeight = getHeight(curSegment);
                        % height
                        curHeight = topHeight - bottomHeight;
                        % determine if there is random flunctuation
                        if max(ts(globalLocation)) > 6000
                            if curHeight < 3500, 
                                curHeight = 3500;
                            end  
                            % record the information of the bump
                            finalSegmentNb = finalSegmentNb + 1;
                            finalSegmentInfo(finalSegmentNb,:) = [globalLocation, curHeight, type(k)];
                        end
                    end
                end
            end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Zhilin Zhang, Jae Hyun Son, Ying Li, Mark Trayer, Zhouyue Pi, Dong Yoon Hwang, Joong Ki Moon, Training-Free Non-Intrusive Load Monitoring of Electric Vehicle Charging with Low Sampling Rate, The 40th Annual Conference of the IEEE Industrial Electronics Society (IECON 2014), Oct.29-Nov.1, 2014, Dallas, TX  

🌈4 Matlab代码实现

相关文章
|
5月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
204 73
|
4月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
4月前
|
算法 调度
基于CVX凸优化的电动汽车充放电调度matlab仿真
本程序基于CVX凸优化实现电动汽车充放电调度,通过全局和局部优化求解,展示了不同情况下的负载曲线。程序在MATLAB 2022a上运行,有效平抑电网负荷峰值,提高电网稳定性。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
8月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
134 6
|
9月前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
211 4
|
8月前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为&quot;Ttttttt111222&quot;,优化后为&quot;Tttttttt333444&quot;,明显改进体现为&quot;Tttttttttt5555&quot;。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用&#39;adam&#39;优化器和超参数调整,最终评估并保存预测结果。
79 0
|
9月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现