非线性非高斯模型的改进粒子滤波算法(Matlab代码实现)

简介: 非线性非高斯模型的改进粒子滤波算法(Matlab代码实现)

💥1 概述

由于红外、被动声纳等被动传感器具有隐蔽性好、抗干扰性强等特点,因此在现代战争中纯方位跟踪有着广泛的应用前景,吸引了许多学者进行研究。但是,纯方位跟踪又是跟踪问题的一个难点,主要是因为同主动跟踪问题相比,纯方位跟踪具有不可观测性,滤波非线性等特点。目前,针对纯方位跟踪研究多采用局部线性化的近似方法。扩展卡尔曼滤波( EKF) 是比较普遍适用的算法,此算法仅利用非线性函数 Taylor 展开的一阶项,只适用于弱非线性系统,在缺少距


离量测信息的条件下容易引起滤波的不稳定,甚至发散; 对于强非线性系统,不敏卡尔曼滤波( UKF) 有更 好的滤波效果,但是 UKF 和 EKF 都是在基于模型线性化和高斯假设的条件下,不适用于非高斯分布的模型。在处理非线性非高斯问题时,一种基于贝叶斯原理的序贯蒙特卡罗粒子滤波器表现出明显的优势[4-5]。在 用粒子滤波进行被动传感器目标跟踪时,其跟踪精度


主要取决于两个方面[5]: 一是采样得到的粒子分布是 否合理,能不能尽可能接近真实状态的后验概率分布。对这方面的研究主要通过选择好的重要性密度函数和在递推过程中克服权值退化和样本贫化问题Payne、Marron 等学者相继利用 EKF 和 UKF 产生建议分布对传统粒子滤波进行改进[6-7]。但是,在非高斯噪声或者过程噪声较大的情况下容易出现滤波发散; 文献[8]提出一种基于 EM 的高斯和粒子滤波算法,该算法通过 EM 产生量测更新过程中的加权粒子集来重新获得


后验状态密度,改善了粒子枯竭问题。但由于 EM 算法假定混合成分数为已知、迭代的结果需要依赖初始值、可能收敛到局部最大点或参数空间的边界,导致滤波过程后验状态密度估计误差增大,影响滤波精度。二是粒子滤波权值计算准确与否。粒子权值的大小代表状态在该粒子位置可能性的大小。当观测噪声突然增大时,粒子权值将会产生较大偏差。


📚2 运行结果

部分代码:

 %重要性权值计算
        for i=1:N
            zPred_pf(:,t,i)=feval('hfun',XparticlePred_pf(:,t,i),x0,y0);
            weight(t,i)=(1-eta)*inv(sqrt(2*pi*det(R1)))*exp(-.5*(Z(:,t)...
                -zPred_pf(:,t,i))'*inv(R1)*(Z(:,t)-zPred_pf(:,t,i)))...
                +eta*inv(sqrt(2*pi*det(R2)))*exp(-.5*(Z(:,t)-...
                zPred_pf(:,t,i))'*inv(R2)*(Z(:,t)-zPred_pf(:,t,i)))...
                + 1e-99; %权值计算,为避免权值为0,用1e-99
        end
        weight(t,:)=weight(t,:)./sum(weight(t,:));%归一化权值
        outIndex = randomR(1:N,weight(t,:)');     %随机采样
        Xparticle_pf(:,t,:) = XparticlePred_pf(:,t,outIndex);%获取新采样值
        %状态估计
        mx=mean(Xparticle_pf(1,t,:));
        my=mean(Xparticle_pf(3,t,:));
        mvx=mean(Xparticle_pf(2,t,:));
        mvy=mean(Xparticle_pf(4,t,:));
        Xmean_pf(j,:,t)=[mx,mvx,my,mvy]';


🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]周航,冯新喜,王蓉.非线性非高斯模型的改进粒子滤波算法[J].信号处理,2012,28(09):1327-1334.

相关文章
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
26 14
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。

热门文章

最新文章