非线性非高斯模型的改进粒子滤波算法(Matlab代码实现)

简介: 非线性非高斯模型的改进粒子滤波算法(Matlab代码实现)

💥1 概述

由于红外、被动声纳等被动传感器具有隐蔽性好、抗干扰性强等特点,因此在现代战争中纯方位跟踪有着广泛的应用前景,吸引了许多学者进行研究。但是,纯方位跟踪又是跟踪问题的一个难点,主要是因为同主动跟踪问题相比,纯方位跟踪具有不可观测性,滤波非线性等特点。目前,针对纯方位跟踪研究多采用局部线性化的近似方法。扩展卡尔曼滤波( EKF) 是比较普遍适用的算法,此算法仅利用非线性函数 Taylor 展开的一阶项,只适用于弱非线性系统,在缺少距


离量测信息的条件下容易引起滤波的不稳定,甚至发散; 对于强非线性系统,不敏卡尔曼滤波( UKF) 有更 好的滤波效果,但是 UKF 和 EKF 都是在基于模型线性化和高斯假设的条件下,不适用于非高斯分布的模型。在处理非线性非高斯问题时,一种基于贝叶斯原理的序贯蒙特卡罗粒子滤波器表现出明显的优势[4-5]。在 用粒子滤波进行被动传感器目标跟踪时,其跟踪精度


主要取决于两个方面[5]: 一是采样得到的粒子分布是 否合理,能不能尽可能接近真实状态的后验概率分布。对这方面的研究主要通过选择好的重要性密度函数和在递推过程中克服权值退化和样本贫化问题Payne、Marron 等学者相继利用 EKF 和 UKF 产生建议分布对传统粒子滤波进行改进[6-7]。但是,在非高斯噪声或者过程噪声较大的情况下容易出现滤波发散; 文献[8]提出一种基于 EM 的高斯和粒子滤波算法,该算法通过 EM 产生量测更新过程中的加权粒子集来重新获得


后验状态密度,改善了粒子枯竭问题。但由于 EM 算法假定混合成分数为已知、迭代的结果需要依赖初始值、可能收敛到局部最大点或参数空间的边界,导致滤波过程后验状态密度估计误差增大,影响滤波精度。二是粒子滤波权值计算准确与否。粒子权值的大小代表状态在该粒子位置可能性的大小。当观测噪声突然增大时,粒子权值将会产生较大偏差。


📚2 运行结果

部分代码:

 %重要性权值计算
        for i=1:N
            zPred_pf(:,t,i)=feval('hfun',XparticlePred_pf(:,t,i),x0,y0);
            weight(t,i)=(1-eta)*inv(sqrt(2*pi*det(R1)))*exp(-.5*(Z(:,t)...
                -zPred_pf(:,t,i))'*inv(R1)*(Z(:,t)-zPred_pf(:,t,i)))...
                +eta*inv(sqrt(2*pi*det(R2)))*exp(-.5*(Z(:,t)-...
                zPred_pf(:,t,i))'*inv(R2)*(Z(:,t)-zPred_pf(:,t,i)))...
                + 1e-99; %权值计算,为避免权值为0,用1e-99
        end
        weight(t,:)=weight(t,:)./sum(weight(t,:));%归一化权值
        outIndex = randomR(1:N,weight(t,:)');     %随机采样
        Xparticle_pf(:,t,:) = XparticlePred_pf(:,t,outIndex);%获取新采样值
        %状态估计
        mx=mean(Xparticle_pf(1,t,:));
        my=mean(Xparticle_pf(3,t,:));
        mvx=mean(Xparticle_pf(2,t,:));
        mvy=mean(Xparticle_pf(4,t,:));
        Xmean_pf(j,:,t)=[mx,mvx,my,mvy]';


🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]周航,冯新喜,王蓉.非线性非高斯模型的改进粒子滤波算法[J].信号处理,2012,28(09):1327-1334.

相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
101 80
|
20天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
19天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
21天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
26天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。

热门文章

最新文章