电力系统机组组合优化调度(IEEE14节点、IEEE30节点、IEEE118节点)(Matlab代码实现)

简介: 电力系统机组组合优化调度(IEEE14节点、IEEE30节点、IEEE118节点)(Matlab代码实现)

1 概述

本文提出一种确定机组组合的降维半解析动态规划方法,可以与其他经济调度算法相结合,用以解决多种约束条件下的机组组合问题。该方法通过比较各时段负荷及机组参数,剔除各时段下不满足要求的组合状态,从而减少动态规划中的状态点数;根据机组的最小连续运行、停运时间限制,以及机组功率上升、下降速度的约束,剔除了状态点间的无效路径,从而减少了动态规划的路径个数,达到降维的目的;在确定机组启停状态后,再采用解析法进行机组的功率分配,可以大大提高动态规划方法的效率。


2 知识点学习

机组组合问题我们前面都总结过:


3 运行结果

3.1 算例1——IEEE14节点

3.2 算例2——IEEE30节点

3.3 算例3——IEEE118节点

3.4 二阶锥松弛法

%发电机费用曲线 二次函数分段线性化
P_nl = sdpvar(n_gen, n_L, n_T);
% for i = 1: n_gen
for t = 1: n_T
    C = [C,
        gen_P(gen(:,GEN_BUS),t) == sum(P_nl(:,:,t), 2)+gen(:,GEN_PMIN).*u_state(gen(:,GEN_BUS),t)/baseMVA,
        ];
%         for l = 1: n_L
    C = [C,
        0 <= P_nl(:,:,t) <= (gen(:, GEN_PMAX)-gen(:, GEN_PMIN))/n_L/baseMVA*ones(1,n_L),
        ];
%         end
end
% end
%%
% 机组开机费用 Cjk
cost_up = sdpvar(n_gen, n_T);
C = [C, cost_up >= 0];
for k = 1: n_T
    for t = 1: k-1
         C = [C,
            cost_up(:,k) >= start_cost(:,t).*(u_state(gen(:,GEN_BUS),k) - sum(u_state(gen(:,GEN_BUS),[k-t: k-1]),2))
            ];       
    end
end
for i = 1: n_gen
    if (init_state(gen(i,GEN_BUS)) == 0)
        C = [C,
            cost_up(i,1) >= start_cost(i,init_down(i))*(u_state(gen(i,GEN_BUS),1)-init_down(i)*init_state(gen(i,GEN_BUS)))
            ];
    end
end


👨‍🎓博主课外兴趣:中西方哲学,送予读者:


👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。在我这个专栏记录我有空时的一些哲学思考和科研笔记:科研和哲思。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“真理”上的尘埃吧。


    或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎


部分理论引用网络文献,若有侵权请联系博主删除。    


4 参考文献

[1]刘严,谭忠富,韩勇,乞建勋. 机组组合优化问题的一种改进的动态规划方法[C]//.中国优选法统筹法与经济数学研究会第七届全国会员代表大会暨第七届中国管理科学学术年会论文集.,2005:374-378.


[2]王成文,韩勇,谭忠富,刘严,杨力俊.一种求解机组组合优化问题的降维半解析动态规划方法(英文)[J].电工技术学报,2006(05):110-116.DOI:10.19595/j.cnki.1000-6753.tces.2006.05.020.


[3]周俊. 机会约束规划下含风电场的机组组合优化[D].广东工业大学,2014.


5 Matlab代码及文章详细阅读

相关文章
|
3月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
175 73
|
1月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
2月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
2月前
|
算法 调度
基于CVX凸优化的电动汽车充放电调度matlab仿真
本程序基于CVX凸优化实现电动汽车充放电调度,通过全局和局部优化求解,展示了不同情况下的负载曲线。程序在MATLAB 2022a上运行,有效平抑电网负荷峰值,提高电网稳定性。
|
2月前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
4月前
|
算法 测试技术 SoC
基于直流潮流的IEEE30电力系统停电分布及自组织临界性分析matlab仿真
本研究提出一种基于直流潮流的算法来分析电力系统的停电分布及自组织临界性。算法迭代更新参数并模拟线路随机断开,运用粒子群优化计算关键值,并评估线路接近容量极限的概率。通过改变参数β和μ,分析不同线路可靠性和容量增加方式下的停电分布,并探索系统趋向临界状态的过程及停电概率分布。该方法基于IEEE30测试系统,利用MATLAB2022a实现,简化处理有功功率流动,适用于评估电力系统稳定性及预防大规模停电事故。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
212 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
96 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度