MATLB|基于小波神经网络的短时交通流量时间序列预测

简介: MATLB|基于小波神经网络的短时交通流量时间序列预测

1 概述

根据小波分析具有良好的时频分析特性,将短时交通流时间序列进行尺度分解,将其分解到不同的尺度空间,并进行单支重构,得到相应的高频分量和低频分量,所得分量相对成分简单、数据变化平稳。对各分量采用不同的预测方法进行预测,由自相关函数和偏相关函数的截尾性和拖尾性判断,高频分量采用ARMA模型进行预测;低频近似分量由于呈现较有规律的函数曲线,而神经网络具有很强的非线性逼近能力,所以采用GRNN网络进行预测。将各分量预测结果矢量相加求和,即可得到综合预测结果。


2 运行结果

3 参考文献

[1]王娟. 短时交通流量混合预测方法研究[D].长安大学,2007.


本文主要研究短时交通流量的混合预测方法,所用数据为高速公路实时采集数据,但对城市道路交通流数据同样适用。首先说明了短时交通流预测的重要意义以及目前存在的各种交通流预测方法;分析了短时交通流的特点,针对短时交通流非线性、时变性、复杂性的特点,传统的预测方法已经不能很好的满足预测精度的要求,本文提出两种交通流量混合预测方法。 方法一:根据小波分析具有良好的时频分析特性,将短时交通流时间序列进行尺度分解,将其分解到不同的尺度空间,并进行单支重构,得到相应的高频分量和低频分量,所得分量相对成分简单、数据变化平稳。对各分量采用不同的预测方法进行预测,由自相关函数和偏相关函数的截尾性和拖尾性判断,高频分量采用ARMA模型进行预测;低频近似分量由于呈现较有规律的函数曲线,而神经网络具有很强的非线性逼近能力,所以采用GRNN网络进行预测。将各分量预测结果矢量相加求和,即可得到综合预测结果。 方法二:很多国内外研究结果表明,交通流具有混沌特性。计算交通流时间序列混沌特征参数,判断本文交通流序列具有混沌性,所以可以采用混沌时间序列预测法进行交通流预测。由自相关函数法确定延迟时间τ、根据G-P算法确定嵌入维数m,并重构相空间,得到与原系统相似的新的状态空间。然后把得到的新状态空间的各分量与神经网络相结合,将其作为RBF网络的输入,通过网络学习训练,输出分量即是最终的预测结果。 由MATLAB仿真效果图和仿真性能指标可以看出,本文提出的两种混合预测方法预测精度很高,可以达到交通流实时控制与诱导的基本要求。


部分理论引用网络文献,若有侵权请联系博主删除。  


4 Matlab代码实现


相关文章
|
13天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
3月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
442 2
|
1天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
6天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
27天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
4月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
159 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面

热门文章

最新文章