基于粒子群算法的电力系统无功优化研究(IEEE14节点)(Matlab代码实现)

简介: 基于粒子群算法的电力系统无功优化研究(IEEE14节点)(Matlab代码实现)

1 概述

近年来,多种启发式优化算法被应用于电力系 统无功优化,并取得了较好的效果,但容易出现早熟 现象和陷入局部收敛等。粒子 群 优 化 算 法 ( Particle Swarm optimization,PSO) 是一种源于对鸟 群捕食行为的研究而发明的进化计算方法。粒 子群优化算法,对优化问题无可微性与连续性要求, 具有全局收敛性、通用性及鲁棒性强等优点,其 具有全局寻优能力,编程简单。本文采用粒子群改进算法对电力系统的无功优化进行研究,以达到对实际电力传输中的无功优化。


2 无功优化数学模型

无功优化的数学模型由目标函数、功率约束条件、变量约束条件组成,通常采用适当地调整发电机

机端电压、投切无功补偿容量和调节变压器分接头,在保证电压质量的前提下降低网损。从经济性考虑,通常把有功网损最小作为目标函数:

 

式中: N 为参与有功网损计算的系统支路条数; Gij为节点 i,j 之间的支路电导; Vi、Vj 分别为节点 i 和 j的电压。无功优化的控制变量包括发电机的机端电压、补偿点的补偿量和可调变压器变比等; 状态变量包括发电机无功出力和各节点电压值。各变量的约束条件包括等式约束和不等式约束,其中等式约束即有功、无功的潮流方程[7],如式( 2) :

             

其他约束条件见第4部分。

3 运行结果

本文以IEEE14节点作为算例:,这里仅展现部分代码。

function [TransFormer_Branch, Normal_Branch, PQ_Node, PV_Node, Swing_Node, Node_Num] = RE_IEEE14_data()
%输入IEEE-14节点系统数据
%===============定义支路数据======================
%================变压器支路=========================
%        首节点   末节点     电抗      非标准变比(首节点:末节点)
TransFormer_Branch = [ ...
    6     5       0.252020      0.932
    7     4       0.209120      0.978
    9     4       0.556180      0.969];
%==================输电线路===============================
%         首节点   末节点     支路电阻    支路电抗  接地电纳(-B/2)
Normal_Branch = [ ...
1     2     0.019380       0.059170      -0.026400      
2     3     0.046990       0.197970      -0.021900      
2     4     0.058110       0.176320      -0.018700      
1     5     0.054030       0.223040      -0.024600      
2     5     0.056950       0.173880      -0.017000      
3     4     0.067010       0.171030      -0.017300      
4     5     0.013350       0.042110      -0.006400      
7     8     0.000000       0.176150      0.000000      
7     9     0.000000       0.110010      0.000000      
9     10    0.031810       0.084500      0.000000      
6     11    0.094980       0.198900      0.000000      
6     12    0.122910       0.255810      0.000000      
6     13    0.066150       0.130270      0.000000      
9     14    0.127110       0.270380      0.000000      
10    11    0.082050       0.192070      0.000000      
12    13    0.220920       0.199880      0.000000      
13    14    0.170930       0.348020      0.000000];
% PQ节点定义:(已知值)1节点号  2有功负荷   3无功负荷  | (需求解值)4节点电压幅值    5节点电压相角    6并联元件(电容或电抗)
PQ_Node = [ ...
5      0.076000       0.016000       1.0        0.0         0.0 
7      0.000000       0.000000       1.0        0.0         0.0 
9      0.295000       0.166000       1.0        0.0         -0.19000 
10     0.090000       0.058000       1.0        0.0         0.0 
11     0.035000       0.018000       1.0        0.0         0.0 
12     0.061000       0.016000       1.0        0.0         0.0 
13     0.135000       0.058000       1.0        0.0         0.0 
14     0.149000       0.050000       1.0        0.0         0.0 ];
% PV节点定义:(已知值)1节点号    2注入有功    3节点电压幅值 4节点电压相角 | (需求解值)5注入无功      6有功负荷   7无功负荷  8并联元件(电容或电抗)
PV_Node = [...
1      0.0      1.06            0.0     0.0     0.000000       0.000000     0.0000
2      0.4      1.045000        0.0     0.0     0.217000       0.127000     0.0000
3      0.0      1.010000        0.0     0.0     0.942000       0.190000     0.0000
6      0.0      1.070000        0.0     0.0     0.112000       0.075000     0.0000
8      0.0      1.090000        0.0     0.0     0.000000       0.000000     0.0000];
% 平衡节点定义:(已知值)1节点号   2节点电压幅值   3节点电压相角 | (需求解值)4注入有功      5无功    
 Swing_Node = [ ...
4       1.02        0.0       0.0          0.0     0.478000       -0.039000]; 
Node_Num = 14;


4 结论

从图 2 和表 4 结果可以看出,电力系统的网损由 11. 505 MVA 下降到 7. 91 MVA,各节点电压也比没有用粒子群优化算法前有了相应的提高。这说明,粒子群算法用于无功优化是完全可行性的,其全局寻优能力强,收敛速度快,优化效果好,容易实现,是一种比较理想的无功优化算法。可以得出,基于粒子群算法的无功优化,收敛速度快,能精确地找到全局最优解,系统的网络损耗明显降低,电压值稳定且有了相应的提升,达到了改善电压质量、减少网络损耗和提高电压稳定性的无功优化目的。


👨‍🎓博主课外兴趣:中西方哲学,送予读者:


👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“真理”上的尘埃吧。


    或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎


5 参考文献

部分理论引用网络文献,若有侵权请联系博主删除。


[1]陆景,庹先国,彭桂力.基于粒子群算法的电力系统无功优化[J].微型机与应用,2017,36(13):19-21+25.DOI:10.19358/j.issn.1674-7720.2017.13.007.


[2]孙华,申方.改进粒子群算法的电力系统无功优化应用[J].黑龙江科技信息,2016(29):80-81.


[3]徐雷. 基于改进粒子群算法的电力系统无功优化[D].西华大学,2016.


[4]赵迪迪,王梦迪.粒子群算法在电力系统无功优化的应用[J].信息技术与信息化,2021(09):246-248.


6 Matlab代码实现

回复关键字

相关文章
|
2月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
3月前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
357 19
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
25天前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
45 10
|
20天前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
25天前
|
算法
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
|
26天前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的64QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容主要探讨基于遗传算法(GA)优化的64QAM概率星座整形(PCS)技术。通过改变星座点出现的概率分布,使外圈点频率降低,从而减小平均功率、增加最小欧氏距离,提升传输性能。仿真使用Matlab2022a完成,展示了优化前后星座图与误码率对比,验证了整形增益及频谱效率提升效果。理论分析表明,Maxwell-Boltzman分布为最优概率分布,核心程序通过GA搜索最佳整形因子v,以蒙特卡罗方法估计误码率,最终实现低误码率优化目标。
31 1
|
1月前
|
算法 数据安全/隐私保护
基于混沌序列和小波变换层次化编码的遥感图像加密算法matlab仿真
本项目实现了一种基于小波变换层次化编码的遥感图像加密算法,并通过MATLAB2022A进行仿真测试。算法对遥感图像进行小波变换后,利用Logistic混沌映射分别对LL、LH、HL和HH子带加密,完成图像的置乱与扩散处理。核心程序展示了图像灰度化、加密及直方图分析过程,最终验证加密图像的相关性、熵和解密后图像质量等性能指标。通过实验结果(附图展示),证明了该算法在图像安全性与可恢复性方面的有效性。

热门文章

最新文章