无人机无线传感器网络中的节能数据采集(Matlab代码实现)

简介: 无人机无线传感器网络中的节能数据采集(Matlab代码实现)

💥1 概述

无线传感器网络(WSN)中传感器的传感、处理、存储和通信功能不断增强。数据采集是传感器网络的基础功能之一。但是,传统的数据采集方式存在“能量空洞”问题。为解决该问题,一些学者提出将无人机(UAV)引入到无线传感器网络中。利用无人机的移动性,降低传输能耗,使各个传感器能耗负担更加均匀。然而,基于无人机的无线传感器网络也面临着诸多挑战,研究人员对存在的问题进行了广泛和深入的探索。如何高效地采集无线传感器网络中的数据仍是待解决的问题之一。本文主要对基于无人机的无线传感器网络(UAV-WSN)的数据采集技术展开研究。研究场景主要考虑:无人机的高度、轨道固定,大量传感器节点随机分布在无人机飞行轨道周围,并通过单跳的通信方式将数据传送到无人机。


📚2 运行结果

 

 


🎉3 参考文献

[1]樊玉莹. 基于无人机的无线传感器网络高效数据采集技术研究[D].上海交通大学,2019.DOI:10.27307/d.cnki.gsjtu.2019.002757.

👨‍💻4 Matlab代码

主函数部分代码:

clear all
close all
addpath('./src')
global u q0 qF
istrain = 0
if istrain == 1
    %% Optimization
    Q = {};
    X  = {};
    Theta = {};
    Lo = {};
    for T = [40 50 100]
        disp(['T =' num2str(T) ', start'])
        [q, x, th, lo]= solveP1('T', T,'Sk',10*(10^6),'epsilon',10^-2); 
        disp(['T =' num2str(T) ', end'])
        Q = cat(1, Q, {q});
        X = cat(1, X, {x});
        Theta = cat(1,Theta,{th});
        Lo = cat(1,Lo, {lo});
    end
else
    load('./data/Fig1.mat')
    parameter_setting('Sk',10*(10^6),'epsilon',10^-2);
end
%% figure 1.(a)
figure(11)
hold on    
plot(Q{1}(1,:),Q{1}(2,:), '--b',Q{2}(1,:),Q{2}(2,:), '-.r',Q{3}(1,:),Q{3}(2,:), '-k'); 
scatter(u(1,:),u(2,:), 'xk');
legend('T=40s','T=50s','T=100s');
axis([ -800 800 -800 800])
grid on
title('Fig. 1.(a), UAV trajectory')
xlabel('x') 
ylabel('y')
text(q0(1),q0(2),'\leftarrow Initial point');
text(qF(1)-300,qF(2),'Final point \rightarrow');
for k = 1: 4
    text(u(1,k),u(2,k),['u_{', num2str(k), '}']);
end
drawnow    
%% figure 1.(b)
figure(13)
Xr = X{2};
t = zeros(4,1);
for k = 1: 4
    t(k) = graythresh(Xr(:,k));
end
    t = min(t) * 1.2;
    Xr(Xr >= t) = 1;
    Xr(Xr <   t) = 0;
plot([0:99]*50/99, Xr(:,1),  '-r',[0:99]*50/99, Xr(:,2),  '--b', [0:99]*50/99, Xr(:,3), ':k',[0:99]*50/99, Xr(:,4),  '-.m');
legend('SN u_{1}','SN u_{2}','SN u_{3}','SN u_{4}','Location','north','NumColumns',4);
axis([ 0 50 0 1.25])
title('Fig.1(b), Wake-up schedule (T=50s)');
yticks([0 1])
yticklabels({'Sleep','Wake-up'})
drawnow


相关文章
|
1月前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
68 0
|
2月前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
100 10
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
5月前
|
传感器 监控 算法
基于虚拟力优化的无线传感器网络覆盖率matlab仿真
**摘要:** 本文探讨了基于虚拟力优化提升无线传感器网络(WSNs)覆盖率的方法。通过在MATLAB2022a中仿真,显示了优化前后网络覆盖率对比及收敛曲线。虚拟力优化算法模拟物理力,以优化传感器节点布局,防止重叠并吸引至目标区域,同时考虑墙壁碰撞。覆盖计算利用平面扫描法评估圆形和正方形传感器的覆盖范围。算法通过迭代优化网络性能,以提高WSNs的监控能力。
|
5月前
|
传感器 算法
基于无线传感器网络的LC-DANSE波束形成算法matlab仿真
摘要: 此MATLAB程序对比了LC-DANSE与LCMV波束形成算法在无线传感器网络中的性能,基于SNR和MSE指标。测试在MATLAB 2022a环境下进行。核心代码涉及权重更新迭代,用于调整传感器节点权重以增强目标信号。LC-DANSE是分布式自适应算法,关注多约束条件下的噪声抑制;LCMV则是经典集中式算法,侧重单个期望信号方向。两者在不同场景下各有优势。程序结果显示SNR和MSE随迭代变化趋势,并保存结果数据。
|
6月前
|
传感器 存储 算法
无线传感网路由VBF协议和DBR协议的MATLAB性能仿真
**摘要** 本文档介绍了在MATLAB2022a中对无线传感器网络的VBF和DBR路由协议的性能仿真,关注能量消耗和节点存活。VBF协议依赖于节点的地理位置,采用源路由,通过矢量和管道路由选择转发节点。DBR协议则运用贪婪算法,基于节点深度决定转发,以接近水面为目标。两协议均考虑能量效率,但可能导致不必要的数据传输和重复分组,需优化策略以适应密集网络和避免冲突。
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度