BP神经网络对指纹识别的应用(Matlab代码实现)

简介: BP神经网络对指纹识别的应用(Matlab代码实现)

💥1 概述

在现代计算机具有强大的计算和信息处理能力的今天,指纹识别作为个人身份鉴定等领域的热点问题一直被人们长期关注着,目前也得到了广泛的应用,例如它可以应用于金融、保险、证券行业的身份认证,安防,人力资源管理等等。


指纹模板分类作指纹识别的热点问题,是人们研究的一个特定方向.新的指纹分类算法应该能够利用前人研究的成果,结合多种识别算法的优点,达到一个具有自适应性、容错性和实时性的新高度。


经过前人努力,在指纹识别技术上已经有很大的突破,识别技术基本趋于成熟化,大多数情况下指纹都能被比较理想的识别.但是随着在某些领域应用的广泛性,人们对指纹识别的实时性、可靠性提出了更高的要求.于是应对指纹识别的种种新要求,我们需要找到更好的识别方法.针对这样的要求,本文提出了一种基于BP神经网络的、对已建好的指纹模板库进行快速分类的算法。


反向传播模型也称BP(Back—Propagation)模型,是一种用于前向多层神经网络的反向传播学习算法.BP网络学习的目的是对网络的连接权值进行调整,使得调整后的网络对任意输入都能够得到期望的输出。为了训练此网络,提供若干个量化后的指纹模板数据,然后计算网络输出,并把输出单元的实际输出值和期望输出值加以比较,然后计算误差;其次,改变网络中所有连接权值以减小误差.反复进行训练,直到网络达到预期的训练目标为止。但BP网络最大的缺点就是学习周期长且极易进入局部极小值.为提高其学习速率.不少学者针对不同应用领域提出了各种加速学习速率的优化算法.作者提出一种将改进梯度算法和DFP变尺度算法相结合的权值修正算法。在误差寻优初期,采用改进梯度算法进行迭代,当寻优过程开始接近最优时,使用DFP变尺度算法,使得算法不仅具有收敛速率快等特点,而且算法简单,有利于增强学习的实时性。


📚2 运行结果

🎉3 参考文献

[1]邓秀春,韩孜,黄剑.基于BP神经网络特征提取的指纹识别应用[J].广西轻工业,2008(04):51-52.

👨‍💻4 Matlab代码

主函数部分代码:

% close all 
% clear 
% echo on 
% clc 
% [inputs,targets] = simplefitdata;
%  net = newff(inputs,targets,20);
%  net = train(net,inputs,targets);
%  outputs = net(inputs);
%  errors = outputs - targets;
%  perf = perform(net,outputs,targets)
inputs = zeros(12,8);
fid = fopen('fingers_feature.txt');
inputs = fscanf(fid, '%f', [12,8]);
disp(inputs);
fclose(fid);
% inputs = [1,2,3,4;1.9,3.7,5.2,3.6;0,1,-1,-1;2,4,6,4;3,6,9,3];
targets = [0,0,0,0,1,1,1,1;0,0,1,1,0,0,1,1;0,1,0,1,0,1,0,1];
net = newff(inputs,targets,20);
net = train(net,inputs,targets);
outputs = net(inputs);
errors = outputs - targets;
perf = perform(net,outputs,targets)  
% NEWFF??生成一个新的前向神经网络 
% TRAIN??对 BP 神经网络进行训练 
% SIM??对 BP 神经网络进行仿真 
% pause        
% %  敲任意键开始 
% clc 
% %  定义训练样本 
% % P 为输入矢量 
% P=[-1,  -2,    3,    1;       -1,    1,    5,  -3];
% % T 为目标矢量 
% T=[-1, -1, 1, 1]; 
% pause; 
% clc 
% %  创建一个新的前向神经网络 
% net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')
% %  当前输入层权值和阈值 
% inputWeights=net.IW{1,1} 
% inputbias=net.b{1} 
% %  当前网络层权值和阈值 


相关文章
|
30天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
171 80
|
18天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
42 18
|
14天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
21天前
|
负载均衡 容灾 Cloud Native
云原生应用网关进阶:阿里云网络ALB Ingress 全能增强
在过去半年,ALB Ingress Controller推出了多项高级特性,包括支持AScript自定义脚本、慢启动、连接优雅中断等功能,增强了产品的灵活性和用户体验。此外,还推出了ingress2Albconfig工具,方便用户从Nginx Ingress迁移到ALB Ingress,以及通过Webhook服务实现更智能的配置校验,减少错误配置带来的影响。在容灾部署方面,支持了多集群网关,提高了系统的高可用性和容灾能力。这些改进旨在为用户提供更强大、更安全的云原生网关解决方案。
355 17
|
20天前
|
容灾 网络协议 数据库
云卓越架构:云上网络稳定性建设和应用稳定性治理最佳实践
本文介绍了云上网络稳定性体系建设的关键内容,包括面向失败的架构设计、可观测性与应急恢复、客户案例及阿里巴巴的核心电商架构演进。首先强调了网络稳定性的挑战及其应对策略,如责任共担模型和冗余设计。接着详细探讨了多可用区部署、弹性架构规划及跨地域容灾设计的最佳实践,特别是阿里云的产品和技术如何助力实现高可用性和快速故障恢复。最后通过具体案例展示了秒级故障转移的效果,以及同城多活架构下的实际应用。这些措施共同确保了业务在面对网络故障时的持续稳定运行。
|
23天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
26天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
23天前
|
数据采集 JavaScript 前端开发
异步请求在TypeScript网络爬虫中的应用
异步请求在TypeScript网络爬虫中的应用
|
20天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。

热门文章

最新文章