多级式多传感器信息融合中的状态估计(Matlab代码实现)

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 多级式多传感器信息融合中的状态估计(Matlab代码实现)

🍁🥬🕒摘要🕒🥬🍁

信息融合作为一门新兴交叉学科,其研究目的是如何通过综合多信息源的信息获得比依靠任何单个信息源更加准确和更加确定的估计与推理。目标跟踪是信息融合的底层关键技术,是实现高层次融合的前提,并在国防、民用多个领域有广泛的应用,也是本文的研究主题。


本文主要针对多传感器多时滞(包括状态之后和观测滞后)系统,基于Kalman滤波和现代时间序列分析方法,利用集中式融合估计、分布式融合估计(按矩阵加权、按对角阵加权、按标量加权)、 协方差交叉融合等方法实现对状态的融合估计。


✨🔎⚡运行结果⚡🔎✨

💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

%-----------------------------------------%
%多传感器多重观测滞后CI融合
%-----------------------------------------%
clc;clear all;
Bushu=300;
T=1.5;
Qw=2;
Rv1=1;Rv2=0.54;Rv3=2;
% N=200;
% for j=1:N
randn('seed',1);w=sqrt(Qw)*randn(1,Bushu+10);
randn('seed',1);v1=sqrt(Rv1)*randn(1,Bushu+10);
randn('seed',1);v2=sqrt(Rv2)*randn(1,Bushu+10);
randn('seed',5);v3=sqrt(Rv3)*randn(1,Bushu+10);
%--------------给出系统模型---------------%
fai=[1 T;0 1];gama=[0.5*T^2;T];H01=[1 0];H12=[0.4 0.8];H03=[1.5 0];H13=[0.6 1];
% fai=[1 1.2;0.3 1];gama=[1;3];H01=[1 0];H12=[0.4 1];H03=[1.5 0];H13=[0.6 1];
x(:,2)=[0;0];x(:,1)=[0;0];
y1(2)=H01*x(:,2)+v1(2);y2(2)=H12*x(:,1)+v2(2);y3(2)=H03*x(:,2)+H13*x(:,1)+v3(2);
for i=3:Bushu+10
    x(:,i)=fai*x(:,i-1)+gama*w(i-1);
    y1(i)=H01*x(:,i)+v1(i);y2(i)=H12*x(:,i-1)+v2(i);y3(:,i)=H03*x(:,i)+H13*x(:,i-1)+v3(i);
end
%------------------局部Kalman滤波器---------------%
%---------------------传感器1----------------%
PP1(:,:,1)=0.1*eye(2);P1(:,:,1)=0.1*eye(2);x1jian(:,1)=zeros(2,1);
for i=1:Bushu+5
    PP1(:,:,i+1)=fai* P1(:,:,i)*fai'+gama*Qw*gama';%预报误差方差阵
    Qeps1(i+1)=H01*PP1(:,:,i+1)*H01'+Rv1;
    k1(:,i+1)=(PP1(:,:,i+1)*H01')*inv(Qeps1(i+1));
    P1(:,:,i+1)=PP1(:,:,i+1)-k1(:,i+1)*Qeps1(i+1)*k1(:,i+1)';%滤波误差方差阵
    x1jianp(:,i+1)=fai*x1jian(:,i);%预报
    eps1(i+1)=y1(i+1)-H01*x1jianp(:,i+1);
    x1jian(:,i+1)=x1jianp(:,i+1)+k1(:,i+1)*eps1(i+1);%滤波
end 
% t=1:Bushu;
% figure
% subplot(2,2,1);plot(t,x(1,t),'b',t,x1jian(1,t),'r:');
% subplot(2,2,2);plot(t,x(2,t),'b',t,x1jian(2,t),'r:');
%-----------------传感器2----------------%
PP2(:,:,1)=0.1*eye(2);P2(:,:,1)=0.1*eye(2);x2jian(:,1)=zeros(2,1);
for i=1:Bushu+5
    PP2(:,:,i+1)=fai* P2(:,:,i)*fai'+gama*Qw*gama';%预报误差方差阵
    Qeps2(i+1)=H12*P2(:,:,i)*H12'+Rv2;
    k2(:,i+1)=(fai*P2(:,:,i)*H12')*inv(Qeps2(i+1));
    P2(:,:,i+1)=PP2(:,:,i+1)-k2(:,i+1)*Qeps2(i+1)*k2(:,i+1)';%滤波误差方差阵
    x2jianp(:,i+1)=fai*x2jian(:,i);%预报
    eps2(i+1)=y2(i+1)-H12*x2jian(:,i);
    x2jian(:,i+1)=x2jianp(:,i+1)+k2(:,i+1)*eps2(i+1);%滤波
end 
% t=1:Bushu;
% figure
% subplot(2,2,1);plot(t,x(1,t),'b',t,x2jian(1,t),'r:');
% subplot(2,2,2);plot(t,x(2,t),'b',t,x2jian(2,t),'r:');
%-----------------传感器3----------------%
PP3(:,:,1)=0.1*eye(2);P3(:,:,1)=0.1*eye(2);x3jian(:,1)=zeros(2,1);
for i=1:Bushu+5
    PP3(:,:,i+1)=fai* P3(:,:,i)*fai'+gama*Qw*gama';%预报误差方差阵
    Qeps3(i+1)=H03*PP3(:,:,i+1)*H03'+H13*P3(:,:,i)*H13'+H03*fai*P3(:,:,i)*H13'+H13*P3(:,:,i)*fai'*H03'+Rv3;
    k3(:,i+1)=(PP3(:,:,i+1)*H03'+fai*P3(:,:,i)*H13')*inv(Qeps3(i+1));
    P3(:,:,i+1)=PP3(:,:,i+1)-k3(:,i+1)*Qeps3(i+1)*k3(:,i+1)';%滤波误差方差阵
    x3jianp(:,i+1)=fai*x3jian(:,i);%预报
    eps3(i+1)=y3(i+1)-H03*x3jianp(:,i+1)-H13*x3jian(:,i);
    x3jian(:,i+1)=x3jianp(:,i+1)+k3(:,i+1)*eps3(i+1);%滤波
end
% t=1:Bushu;
% figure
% subplot(2,2,1);plot(t,x(1,t),'b',t,x3jian(1,t),'r:');
% subplot(2,2,2);plot(t,x(2,t),'b',t,x3jian(2,t),'r:');
%-----------------迹----------------%
for i=1:Bushu+5
    a(i)=trace(P1(:,:,i));
    b(i)=trace(P2(:,:,i));
    c(i)=trace(P3(:,:,i));
end
%-----------------滤波误差互协方差阵----------------%
P12(:,:,1)=eye(2);P13(:,:,1)=eye(2);P23(:,:,1)=eye(2);
for i=1:Bushu  
    PP12(:,:,i+1)=fai* P12(:,:,i)*fai'+gama*Qw*gama';%预报误差互协方差阵
    PP13(:,:,i+1)=fai* P13(:,:,i)*fai'+gama*Qw*gama';
    PP23(:,:,i+1)=fai* P23(:,:,i)*fai'+gama*Qw*gama';
    %---滤波误差互协方差阵----%
    P12(:,:,i+1)=[eye(2)-k1(:,i+1)*H01]*PP12(:,:,i+1)-[eye(2)-k1(:,i+1)*H01]*fai*P12(:,:,i)*H12'*k2(:,i+1)';P21(:,:,i+1)=P12(:,:,i+1)';
    P13(:,:,i+1)=[eye(2)-k1(:,i+1)*H01]*PP13(:,:,i+1)*[eye(2)-k3(:,i+1)*H03]'-[eye(2)-k1(:,i+1)*H01]*fai*P13(:,:,i)*H13'*k3(:,i+1)';P31(:,:,i+1)=P13(:,:,i+1)';
    P23(:,:,i+1)=PP23(:,:,i+1)*[eye(2)-k3(:,i+1)*H03]'+k1(:,i+1)*H12*P23(:,:,i)*H13'*k3(:,i+1)'-fai*P23(:,:,i)*H13'*k3(:,i+1)'-k2(:,i+1)*H12*P23(:,:,i)*fai'*[eye(2)-k3(:,i+1)*H03];P32(:,:,i+1)=P23(:,:,i+1)';
end
%-----------------按矩阵加权---------------%
for i=1:Bushu
    Psigma(:,:,i)=[P1(:,:,i),P12(:,:,i),P13(:,:,i);
                  P12(:,:,i)',P2(:,:,i),P23(:,:,i);
                  P13(:,:,i)',P23(:,:,i)',P3(:,:,i)];
end
e=[eye(2),eye(2),eye(2)]';
for i=1:Bushu
    A(:,:,i)=inv(Psigma(:,:,i))*e*inv(e'*inv(Psigma(:,:,i))*e);
    Pf(:,:,i)=inv(e'*inv(Psigma(:,:,i))*e);%误差方差阵
    xfjian(:,i)=A(1:2,:,i)'*x1jian(:,i)+A(3:4,:,i)'*x2jian(:,i)+A(5:6,:,i)'*x3jian(:,i);
end
% t=1:Bushu;
% figure
% subplot(2,2,1);plot(t,x(1,t),'b',t,xfjian(1,t),'r:');
% subplot(2,2,2);plot(t,x(2,t),'b',t,xfjian(2,t),'r:');
%-----------------exf---------------%
exf(300)=[0];
exf(1)=(xfjian(1,1)-x(1,1))*(xfjian(1,1)-x(1,1));
for i=2:Bushu
   exf(i)=(xfjian(1,i)-x(1,i))*(xfjian(1,i)-x(1,i))+exf(i-1);
end   
% t=1:Bushu;
% figure
% subplot(2,2,1);plot(t,exf(1,t),'b');
% subplot(2,2,2);plot(t,exf(2,t),'b');
%-----------------BCI----------------%
f=f_bcifun(w);
Aeq=[1 1 1];Beq=[1]; LB=[0 0 0]';UB=[1 1 1]';A=[];B=[];
w0=[0.4;0.4;0.2];
w=fmincon(@f_bcifun,w0,A,B,Aeq,Beq,LB,UB)
PBci=inv(w(1)*inv(P1(:,:,Bushu))+w(2)*inv(P2(:,:,Bushu))+w(3)*inv(P3(:,:,Bushu)));%CI融合估值误差方差阵
JBci=trace(PBci);%CI融合估值误差方差阵的迹
for i=1:Bushu
    xBci(:,i)=PBci*(w(1)*inv(P1(:,:,Bushu))*x1jian(:,i)+w(2)*inv(P2(:,:,Bushu))*x2jian(:,i)+w(3)*inv(P3(:,:,Bushu))*x3jian(:,i));
end
% %-----------------BCI----------------%
% % PBci_=PBci*(w(1)*w(1)*inv(p11(:,:,Bushu))*p11(:,:,Bushu)*inv(p11(:,:,Bushu))+w(1)*w(2)*inv(p11(:,:,Bushu))*p12(:,:,Bushu)*inv(p22(:,:,Bushu))+...
% %     w(1)*w(3)*inv(p11(:,:,Bushu))*p13(:,:,Bushu)*inv(p33(:,:,Bushu))+...
% %     w(2)*w(1)*inv(p22(:,:,Bushu))*p12(:,:,Bushu)'*inv(p11(:,:,Bushu))+w(2)*w(2)*inv(p22(:,:,Bushu))*p22(:,:,Bushu)*inv(p22(:,:,Bushu))+...
% %     w(2)*w(3)*inv(p22(:,:,Bushu))*p23(:,:,Bushu)*inv(p33(:,:,Bushu))+...        
% %     w(3)*w(1)*inv(p33(:,:,Bushu))*p13(:,:,Bushu)'*inv(p11(:,:,Bushu))+w(3)*w(2)*inv(p33(:,:,Bushu))*p23(:,:,Bushu)'*inv(p22(:,:,Bushu))+...
% %     w(3)*w(3)*inv(p33(:,:,Bushu))*p33(:,:,Bushu)*inv(p33(:,:,Bushu)))*PBci;
% % JBci_=trace(PBci_);
% P1_ni=inv(P1(:,:,Bushu));P2_ni=inv(P2(:,:,Bushu));P3_ni=inv(P3(:,:,Bushu));
% PBci_ni=inv(PBci);%PBci_ni_=inv(PBci_);
% theta=0:pi/100:2*pi;
%-----------------SCI----------------%
deta=0.0001;pp1=P1(:,:,Bushu);pp2=P2(:,:,Bushu);pp3=P3(:,:,Bushu);
% [w12,Pci12]=y12_0618(pp1,pp2,deta)%P1和P2形成pci1
% [w123,Pci123,trPci123]=y123_0618(Pci12,pp3,deta)%P3和pci1融合成psci123
[w13,Pci13]=y13_0618(deta,pp1,pp3)%pp1和pp3形成pci1
[w132,Pci132,trPci132]=y132_0618(deta,Pci13,pp2)%pp2和pci1融合成psci132
for i=1:Bushu
%      xci12(:,i)=Pci12*(w12*inv(P1(:,:,Bushu))*x1jian(:,i)+(1-w12)*inv(P2(:,:,Bushu))*x2jian(:,i));
%      xci123(:,i)=Pci123*(w123*inv(Pci12)*xci12(:,i)+(1-w123)*inv(P3(:,:,Bushu))*x3jian(:,i));%xci123
     xci13(:,i)=Pci13*(w13*inv(pp1)*x1jian(:,i)+(1-w13)*inv(pp3)*x3jian(:,i));
     xci132(:,i)=Pci132*(w132*inv(Pci13)*xci13(:,i)+(1-w132)*inv(pp2)*x2jian(:,i));%xci132
end
t=1:Bushu;
figure
plot(t,x(1,t),'b',t,xci132(1,t),'r:');
figure
plot(t,x(2,t),'b',t,xci132(2,t),'r:');axis([0,Bushu,-45,20]);
%-----------------exci---------------%
exci(300)=[0];
exci(1)=(xci132(1,1)-x(1,1))*(xci132(1,1)-x(1,1));
for i=2:Bushu
   exci(i)=(xci132(1,i)-x(1,i))*(xci132(1,i)-x(1,i))+exci(i-1);
end   
t=1:Bushu;
figure
plot(t,exf(t),'b',t,exci(t),'r');axis([0,300,0,180]);
Pci132_=Pci132*(w132*w13*w132*w13*inv(pp1)*pp1*inv(pp1)+w132*w13*w132*(1-w13)*inv(pp1)*P13(:,:,Bushu)*inv(pp3)+...
        w132*w13*(1-w132)*inv(pp1)*P12(:,:,Bushu)*inv(pp2)+w132*(1-w13)*w132*w13*inv(pp3)*P31(:,:,Bushu)*inv(pp1)+w132*(1-w13)*w132*(1-w13)*inv(pp3)+...
        w132*(1-w13)*(1-w132)*inv(pp3)*P32(:,:,Bushu)*inv(pp2)+(1-w132)*w132*w13*inv(pp2)*P21(:,:,Bushu)*inv(pp1)+(1-w132)*w132*(1-w13)*inv(pp2)*P23(:,:,Bushu)*inv(pp3)+...
        (1-w132)*(1-w132)*inv(pp2)*pp2*inv(pp2))*Pci132;
%-----------------椭圆半径----------------%
P1_ni=inv(P1(:,:,Bushu));P2_ni=inv(P2(:,:,Bushu));P3_ni=inv(P3(:,:,Bushu));
% Pci123_ni=inv(Pci123);
Pci132_ni=inv(Pci132);Pci132__ni=inv(Pci132_);
% PBci_ni=inv(PBci);%PBci_ni_=inv(PBci_);
theta=0:pi/100:2*pi;
r1=1./sqrt(P1_ni(1,1)*cos(theta).^2+(P1_ni(1,2)+P1_ni(2,1))*cos(theta).*sin(theta)+P1_ni(2,2)*sin(theta).^2);
r2=1./sqrt(P2_ni(1,1)*cos(theta).^2+(P2_ni(1,2)+P2_ni(2,1))*cos(theta).*sin(theta)+P2_ni(2,2)*sin(theta).^2);
r3=1./sqrt(P3_ni(1,1)*cos(theta).^2+(P3_ni(1,2)+P3_ni(2,1))*cos(theta).*sin(theta)+P3_ni(2,2)*sin(theta).^2);
% rBci=1./sqrt(PBci_ni(1,1)*cos(theta).^2+(PBci_ni(1,2)+PBci_ni(2,1))*cos(theta).*sin(theta)+PBci_ni(2,2)*sin(theta).^2);
% rBci_=1./sqrt(PBci_ni_(1,1)*cos(theta).^2+(PBci_ni_(1,2)+PBci_ni_(2,1))*cos(theta).*sin(theta)+PBci_ni_(2,2)*sin(theta).^2);
% rci123=1./sqrt(Pci123_ni(1,1)*cos(theta).^2+(Pci123_ni(1,2)+Pci123_ni(2,1))*cos(theta).*sin(theta)+Pci123_ni(2,2)*sin(theta).^2);
rci132=1./sqrt(Pci132_ni(1,1)*cos(theta).^2+(Pci132_ni(1,2)+Pci132_ni(2,1))*cos(theta).*sin(theta)+Pci132_ni(2,2)*sin(theta).^2);
rci132_=1./sqrt(Pci132__ni(1,1)*cos(theta).^2+(Pci132__ni(1,2)+Pci132__ni(2,1))*cos(theta).*sin(theta)+Pci132__ni(2,2)*sin(theta).^2);
%-----------------MSE曲线----------------%
%     for i=1:Bushu
%         ErroP1(j,i)=(x1jian(:,i)-x(:,i))'*(x1jian(:,i)-x(:,i));
%         ErroP2(j,i)=(x2jian(:,i)-x(:,i))'*(x2jian(:,i)-x(:,i));
%         ErroP3(j,i)=(x3jian(:,i)-x(:,i))'*(x3jian(:,i)-x(:,i));
%         ErroPc(j,i)=(xcjian(:,i)-x(:,i))'*(xcjian(:,i)-x(:,i));
%         ErroPm(j,i)=(xmjian(:,i)-x(:,i))'*(xmjian(:,i)-x(:,i));
%         ErroPd(j,i)=(xdjian(:,i)-x(:,i))'*(xdjian(:,i)-x(:,i));
%         ErroPs(j,i)=(xsjian(:,i)-x(:,i))'*(xsjian(:,i)-x(:,i));
%         ErroPBci(j,i)=(xBci(:,i)-x(:,i))'*(xBci(:,i)-x(:,i));
%     end
%     %  end
%      MSE1=sum(ErroP1)/N;
%      MSE2=sum(ErroP2)/N;
%      MSE3=sum(ErroP3)/N;
%      MSEc=sum(ErroPc)/N;
%      MSEm=sum(ErroPm)/N;
%      MSEd=sum(ErroPd)/N;
%      MSEs=sum(ErroPs)/N;
%      MSEci=sum(ErroPBci)/N;
%--------------作图----------------%
t=1:Bushu;
figure 
hold on;
polar(theta,r1,'b');
polar(theta,r2,'k');
polar(theta,r3,'r');
polar(theta,rci132,'k');
polar(theta,rci132_,'k-.');axis([-2.3,2.3,-2.3,2.3]);
% polar(theta,rci123,'b-.');
% polar(theta,rBci,'b-.');
%polar(theta,rBci_,'b-.');%  figure
%  t=50:50:Bushu;
% plot(t,MSE1(t),'r-h',t,MSE2(t),'r-s',t,MSE3(t),'r-x',t,MSEc(t),'k-^',t,MSEm(t),'g-o',t,MSEd(t),'g-d',t,MSEs(t),'g-*',t,MSEci(t),'r-v'); 
% legend('MSE1','MSE2','MSE3','MSEc','MSEm','MSEd','MSEs','MSEci');
% hold on
% t=1:Bushu;
% line([50,Bushu],[a(Bushu),a(Bushu)]);line([50,Bushu],[b(Bushu),b(Bushu)]);line([50,Bushu],[c(Bushu),c(Bushu)]);
% line([50,Bushu],[jiPm(Bushu),jiPm(Bushu)]);line([50,Bushu],[jiPd(Bushu),jiPd(Bushu)]);line([50,Bushu],[jiPs(Bushu),jiPs(Bushu)]);
% line([50,Bushu],[JBci,JBci]);line([50,Bushu],[JBci_,JBci_]);


📜📢🌈参考文献🌈📢📜

[1]乔向东. 信息融合系统中目标跟踪技术研究[D].西安电子科技大学,2003.

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
248 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
147 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
119 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
传感器 监控 算法
基于虚拟力优化的无线传感器网络覆盖率matlab仿真
**摘要:** 本文探讨了基于虚拟力优化提升无线传感器网络(WSNs)覆盖率的方法。通过在MATLAB2022a中仿真,显示了优化前后网络覆盖率对比及收敛曲线。虚拟力优化算法模拟物理力,以优化传感器节点布局,防止重叠并吸引至目标区域,同时考虑墙壁碰撞。覆盖计算利用平面扫描法评估圆形和正方形传感器的覆盖范围。算法通过迭代优化网络性能,以提高WSNs的监控能力。
|
6月前
|
传感器 算法
基于无线传感器网络的LC-DANSE波束形成算法matlab仿真
摘要: 此MATLAB程序对比了LC-DANSE与LCMV波束形成算法在无线传感器网络中的性能,基于SNR和MSE指标。测试在MATLAB 2022a环境下进行。核心代码涉及权重更新迭代,用于调整传感器节点权重以增强目标信号。LC-DANSE是分布式自适应算法,关注多约束条件下的噪声抑制;LCMV则是经典集中式算法,侧重单个期望信号方向。两者在不同场景下各有优势。程序结果显示SNR和MSE随迭代变化趋势,并保存结果数据。
|
8月前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章