多级式多传感器信息融合中的状态估计(Matlab代码实现)

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 多级式多传感器信息融合中的状态估计(Matlab代码实现)

🍁🥬🕒摘要🕒🥬🍁

信息融合作为一门新兴交叉学科,其研究目的是如何通过综合多信息源的信息获得比依靠任何单个信息源更加准确和更加确定的估计与推理。目标跟踪是信息融合的底层关键技术,是实现高层次融合的前提,并在国防、民用多个领域有广泛的应用,也是本文的研究主题。


本文主要针对多传感器多时滞(包括状态之后和观测滞后)系统,基于Kalman滤波和现代时间序列分析方法,利用集中式融合估计、分布式融合估计(按矩阵加权、按对角阵加权、按标量加权)、 协方差交叉融合等方法实现对状态的融合估计。


✨🔎⚡运行结果⚡🔎✨

💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

%-----------------------------------------%
%多传感器多重观测滞后CI融合
%-----------------------------------------%
clc;clear all;
Bushu=300;
T=1.5;
Qw=2;
Rv1=1;Rv2=0.54;Rv3=2;
% N=200;
% for j=1:N
randn('seed',1);w=sqrt(Qw)*randn(1,Bushu+10);
randn('seed',1);v1=sqrt(Rv1)*randn(1,Bushu+10);
randn('seed',1);v2=sqrt(Rv2)*randn(1,Bushu+10);
randn('seed',5);v3=sqrt(Rv3)*randn(1,Bushu+10);
%--------------给出系统模型---------------%
fai=[1 T;0 1];gama=[0.5*T^2;T];H01=[1 0];H12=[0.4 0.8];H03=[1.5 0];H13=[0.6 1];
% fai=[1 1.2;0.3 1];gama=[1;3];H01=[1 0];H12=[0.4 1];H03=[1.5 0];H13=[0.6 1];
x(:,2)=[0;0];x(:,1)=[0;0];
y1(2)=H01*x(:,2)+v1(2);y2(2)=H12*x(:,1)+v2(2);y3(2)=H03*x(:,2)+H13*x(:,1)+v3(2);
for i=3:Bushu+10
    x(:,i)=fai*x(:,i-1)+gama*w(i-1);
    y1(i)=H01*x(:,i)+v1(i);y2(i)=H12*x(:,i-1)+v2(i);y3(:,i)=H03*x(:,i)+H13*x(:,i-1)+v3(i);
end
%------------------局部Kalman滤波器---------------%
%---------------------传感器1----------------%
PP1(:,:,1)=0.1*eye(2);P1(:,:,1)=0.1*eye(2);x1jian(:,1)=zeros(2,1);
for i=1:Bushu+5
    PP1(:,:,i+1)=fai* P1(:,:,i)*fai'+gama*Qw*gama';%预报误差方差阵
    Qeps1(i+1)=H01*PP1(:,:,i+1)*H01'+Rv1;
    k1(:,i+1)=(PP1(:,:,i+1)*H01')*inv(Qeps1(i+1));
    P1(:,:,i+1)=PP1(:,:,i+1)-k1(:,i+1)*Qeps1(i+1)*k1(:,i+1)';%滤波误差方差阵
    x1jianp(:,i+1)=fai*x1jian(:,i);%预报
    eps1(i+1)=y1(i+1)-H01*x1jianp(:,i+1);
    x1jian(:,i+1)=x1jianp(:,i+1)+k1(:,i+1)*eps1(i+1);%滤波
end 
% t=1:Bushu;
% figure
% subplot(2,2,1);plot(t,x(1,t),'b',t,x1jian(1,t),'r:');
% subplot(2,2,2);plot(t,x(2,t),'b',t,x1jian(2,t),'r:');
%-----------------传感器2----------------%
PP2(:,:,1)=0.1*eye(2);P2(:,:,1)=0.1*eye(2);x2jian(:,1)=zeros(2,1);
for i=1:Bushu+5
    PP2(:,:,i+1)=fai* P2(:,:,i)*fai'+gama*Qw*gama';%预报误差方差阵
    Qeps2(i+1)=H12*P2(:,:,i)*H12'+Rv2;
    k2(:,i+1)=(fai*P2(:,:,i)*H12')*inv(Qeps2(i+1));
    P2(:,:,i+1)=PP2(:,:,i+1)-k2(:,i+1)*Qeps2(i+1)*k2(:,i+1)';%滤波误差方差阵
    x2jianp(:,i+1)=fai*x2jian(:,i);%预报
    eps2(i+1)=y2(i+1)-H12*x2jian(:,i);
    x2jian(:,i+1)=x2jianp(:,i+1)+k2(:,i+1)*eps2(i+1);%滤波
end 
% t=1:Bushu;
% figure
% subplot(2,2,1);plot(t,x(1,t),'b',t,x2jian(1,t),'r:');
% subplot(2,2,2);plot(t,x(2,t),'b',t,x2jian(2,t),'r:');
%-----------------传感器3----------------%
PP3(:,:,1)=0.1*eye(2);P3(:,:,1)=0.1*eye(2);x3jian(:,1)=zeros(2,1);
for i=1:Bushu+5
    PP3(:,:,i+1)=fai* P3(:,:,i)*fai'+gama*Qw*gama';%预报误差方差阵
    Qeps3(i+1)=H03*PP3(:,:,i+1)*H03'+H13*P3(:,:,i)*H13'+H03*fai*P3(:,:,i)*H13'+H13*P3(:,:,i)*fai'*H03'+Rv3;
    k3(:,i+1)=(PP3(:,:,i+1)*H03'+fai*P3(:,:,i)*H13')*inv(Qeps3(i+1));
    P3(:,:,i+1)=PP3(:,:,i+1)-k3(:,i+1)*Qeps3(i+1)*k3(:,i+1)';%滤波误差方差阵
    x3jianp(:,i+1)=fai*x3jian(:,i);%预报
    eps3(i+1)=y3(i+1)-H03*x3jianp(:,i+1)-H13*x3jian(:,i);
    x3jian(:,i+1)=x3jianp(:,i+1)+k3(:,i+1)*eps3(i+1);%滤波
end
% t=1:Bushu;
% figure
% subplot(2,2,1);plot(t,x(1,t),'b',t,x3jian(1,t),'r:');
% subplot(2,2,2);plot(t,x(2,t),'b',t,x3jian(2,t),'r:');
%-----------------迹----------------%
for i=1:Bushu+5
    a(i)=trace(P1(:,:,i));
    b(i)=trace(P2(:,:,i));
    c(i)=trace(P3(:,:,i));
end
%-----------------滤波误差互协方差阵----------------%
P12(:,:,1)=eye(2);P13(:,:,1)=eye(2);P23(:,:,1)=eye(2);
for i=1:Bushu  
    PP12(:,:,i+1)=fai* P12(:,:,i)*fai'+gama*Qw*gama';%预报误差互协方差阵
    PP13(:,:,i+1)=fai* P13(:,:,i)*fai'+gama*Qw*gama';
    PP23(:,:,i+1)=fai* P23(:,:,i)*fai'+gama*Qw*gama';
    %---滤波误差互协方差阵----%
    P12(:,:,i+1)=[eye(2)-k1(:,i+1)*H01]*PP12(:,:,i+1)-[eye(2)-k1(:,i+1)*H01]*fai*P12(:,:,i)*H12'*k2(:,i+1)';P21(:,:,i+1)=P12(:,:,i+1)';
    P13(:,:,i+1)=[eye(2)-k1(:,i+1)*H01]*PP13(:,:,i+1)*[eye(2)-k3(:,i+1)*H03]'-[eye(2)-k1(:,i+1)*H01]*fai*P13(:,:,i)*H13'*k3(:,i+1)';P31(:,:,i+1)=P13(:,:,i+1)';
    P23(:,:,i+1)=PP23(:,:,i+1)*[eye(2)-k3(:,i+1)*H03]'+k1(:,i+1)*H12*P23(:,:,i)*H13'*k3(:,i+1)'-fai*P23(:,:,i)*H13'*k3(:,i+1)'-k2(:,i+1)*H12*P23(:,:,i)*fai'*[eye(2)-k3(:,i+1)*H03];P32(:,:,i+1)=P23(:,:,i+1)';
end
%-----------------按矩阵加权---------------%
for i=1:Bushu
    Psigma(:,:,i)=[P1(:,:,i),P12(:,:,i),P13(:,:,i);
                  P12(:,:,i)',P2(:,:,i),P23(:,:,i);
                  P13(:,:,i)',P23(:,:,i)',P3(:,:,i)];
end
e=[eye(2),eye(2),eye(2)]';
for i=1:Bushu
    A(:,:,i)=inv(Psigma(:,:,i))*e*inv(e'*inv(Psigma(:,:,i))*e);
    Pf(:,:,i)=inv(e'*inv(Psigma(:,:,i))*e);%误差方差阵
    xfjian(:,i)=A(1:2,:,i)'*x1jian(:,i)+A(3:4,:,i)'*x2jian(:,i)+A(5:6,:,i)'*x3jian(:,i);
end
% t=1:Bushu;
% figure
% subplot(2,2,1);plot(t,x(1,t),'b',t,xfjian(1,t),'r:');
% subplot(2,2,2);plot(t,x(2,t),'b',t,xfjian(2,t),'r:');
%-----------------exf---------------%
exf(300)=[0];
exf(1)=(xfjian(1,1)-x(1,1))*(xfjian(1,1)-x(1,1));
for i=2:Bushu
   exf(i)=(xfjian(1,i)-x(1,i))*(xfjian(1,i)-x(1,i))+exf(i-1);
end   
% t=1:Bushu;
% figure
% subplot(2,2,1);plot(t,exf(1,t),'b');
% subplot(2,2,2);plot(t,exf(2,t),'b');
%-----------------BCI----------------%
f=f_bcifun(w);
Aeq=[1 1 1];Beq=[1]; LB=[0 0 0]';UB=[1 1 1]';A=[];B=[];
w0=[0.4;0.4;0.2];
w=fmincon(@f_bcifun,w0,A,B,Aeq,Beq,LB,UB)
PBci=inv(w(1)*inv(P1(:,:,Bushu))+w(2)*inv(P2(:,:,Bushu))+w(3)*inv(P3(:,:,Bushu)));%CI融合估值误差方差阵
JBci=trace(PBci);%CI融合估值误差方差阵的迹
for i=1:Bushu
    xBci(:,i)=PBci*(w(1)*inv(P1(:,:,Bushu))*x1jian(:,i)+w(2)*inv(P2(:,:,Bushu))*x2jian(:,i)+w(3)*inv(P3(:,:,Bushu))*x3jian(:,i));
end
% %-----------------BCI----------------%
% % PBci_=PBci*(w(1)*w(1)*inv(p11(:,:,Bushu))*p11(:,:,Bushu)*inv(p11(:,:,Bushu))+w(1)*w(2)*inv(p11(:,:,Bushu))*p12(:,:,Bushu)*inv(p22(:,:,Bushu))+...
% %     w(1)*w(3)*inv(p11(:,:,Bushu))*p13(:,:,Bushu)*inv(p33(:,:,Bushu))+...
% %     w(2)*w(1)*inv(p22(:,:,Bushu))*p12(:,:,Bushu)'*inv(p11(:,:,Bushu))+w(2)*w(2)*inv(p22(:,:,Bushu))*p22(:,:,Bushu)*inv(p22(:,:,Bushu))+...
% %     w(2)*w(3)*inv(p22(:,:,Bushu))*p23(:,:,Bushu)*inv(p33(:,:,Bushu))+...        
% %     w(3)*w(1)*inv(p33(:,:,Bushu))*p13(:,:,Bushu)'*inv(p11(:,:,Bushu))+w(3)*w(2)*inv(p33(:,:,Bushu))*p23(:,:,Bushu)'*inv(p22(:,:,Bushu))+...
% %     w(3)*w(3)*inv(p33(:,:,Bushu))*p33(:,:,Bushu)*inv(p33(:,:,Bushu)))*PBci;
% % JBci_=trace(PBci_);
% P1_ni=inv(P1(:,:,Bushu));P2_ni=inv(P2(:,:,Bushu));P3_ni=inv(P3(:,:,Bushu));
% PBci_ni=inv(PBci);%PBci_ni_=inv(PBci_);
% theta=0:pi/100:2*pi;
%-----------------SCI----------------%
deta=0.0001;pp1=P1(:,:,Bushu);pp2=P2(:,:,Bushu);pp3=P3(:,:,Bushu);
% [w12,Pci12]=y12_0618(pp1,pp2,deta)%P1和P2形成pci1
% [w123,Pci123,trPci123]=y123_0618(Pci12,pp3,deta)%P3和pci1融合成psci123
[w13,Pci13]=y13_0618(deta,pp1,pp3)%pp1和pp3形成pci1
[w132,Pci132,trPci132]=y132_0618(deta,Pci13,pp2)%pp2和pci1融合成psci132
for i=1:Bushu
%      xci12(:,i)=Pci12*(w12*inv(P1(:,:,Bushu))*x1jian(:,i)+(1-w12)*inv(P2(:,:,Bushu))*x2jian(:,i));
%      xci123(:,i)=Pci123*(w123*inv(Pci12)*xci12(:,i)+(1-w123)*inv(P3(:,:,Bushu))*x3jian(:,i));%xci123
     xci13(:,i)=Pci13*(w13*inv(pp1)*x1jian(:,i)+(1-w13)*inv(pp3)*x3jian(:,i));
     xci132(:,i)=Pci132*(w132*inv(Pci13)*xci13(:,i)+(1-w132)*inv(pp2)*x2jian(:,i));%xci132
end
t=1:Bushu;
figure
plot(t,x(1,t),'b',t,xci132(1,t),'r:');
figure
plot(t,x(2,t),'b',t,xci132(2,t),'r:');axis([0,Bushu,-45,20]);
%-----------------exci---------------%
exci(300)=[0];
exci(1)=(xci132(1,1)-x(1,1))*(xci132(1,1)-x(1,1));
for i=2:Bushu
   exci(i)=(xci132(1,i)-x(1,i))*(xci132(1,i)-x(1,i))+exci(i-1);
end   
t=1:Bushu;
figure
plot(t,exf(t),'b',t,exci(t),'r');axis([0,300,0,180]);
Pci132_=Pci132*(w132*w13*w132*w13*inv(pp1)*pp1*inv(pp1)+w132*w13*w132*(1-w13)*inv(pp1)*P13(:,:,Bushu)*inv(pp3)+...
        w132*w13*(1-w132)*inv(pp1)*P12(:,:,Bushu)*inv(pp2)+w132*(1-w13)*w132*w13*inv(pp3)*P31(:,:,Bushu)*inv(pp1)+w132*(1-w13)*w132*(1-w13)*inv(pp3)+...
        w132*(1-w13)*(1-w132)*inv(pp3)*P32(:,:,Bushu)*inv(pp2)+(1-w132)*w132*w13*inv(pp2)*P21(:,:,Bushu)*inv(pp1)+(1-w132)*w132*(1-w13)*inv(pp2)*P23(:,:,Bushu)*inv(pp3)+...
        (1-w132)*(1-w132)*inv(pp2)*pp2*inv(pp2))*Pci132;
%-----------------椭圆半径----------------%
P1_ni=inv(P1(:,:,Bushu));P2_ni=inv(P2(:,:,Bushu));P3_ni=inv(P3(:,:,Bushu));
% Pci123_ni=inv(Pci123);
Pci132_ni=inv(Pci132);Pci132__ni=inv(Pci132_);
% PBci_ni=inv(PBci);%PBci_ni_=inv(PBci_);
theta=0:pi/100:2*pi;
r1=1./sqrt(P1_ni(1,1)*cos(theta).^2+(P1_ni(1,2)+P1_ni(2,1))*cos(theta).*sin(theta)+P1_ni(2,2)*sin(theta).^2);
r2=1./sqrt(P2_ni(1,1)*cos(theta).^2+(P2_ni(1,2)+P2_ni(2,1))*cos(theta).*sin(theta)+P2_ni(2,2)*sin(theta).^2);
r3=1./sqrt(P3_ni(1,1)*cos(theta).^2+(P3_ni(1,2)+P3_ni(2,1))*cos(theta).*sin(theta)+P3_ni(2,2)*sin(theta).^2);
% rBci=1./sqrt(PBci_ni(1,1)*cos(theta).^2+(PBci_ni(1,2)+PBci_ni(2,1))*cos(theta).*sin(theta)+PBci_ni(2,2)*sin(theta).^2);
% rBci_=1./sqrt(PBci_ni_(1,1)*cos(theta).^2+(PBci_ni_(1,2)+PBci_ni_(2,1))*cos(theta).*sin(theta)+PBci_ni_(2,2)*sin(theta).^2);
% rci123=1./sqrt(Pci123_ni(1,1)*cos(theta).^2+(Pci123_ni(1,2)+Pci123_ni(2,1))*cos(theta).*sin(theta)+Pci123_ni(2,2)*sin(theta).^2);
rci132=1./sqrt(Pci132_ni(1,1)*cos(theta).^2+(Pci132_ni(1,2)+Pci132_ni(2,1))*cos(theta).*sin(theta)+Pci132_ni(2,2)*sin(theta).^2);
rci132_=1./sqrt(Pci132__ni(1,1)*cos(theta).^2+(Pci132__ni(1,2)+Pci132__ni(2,1))*cos(theta).*sin(theta)+Pci132__ni(2,2)*sin(theta).^2);
%-----------------MSE曲线----------------%
%     for i=1:Bushu
%         ErroP1(j,i)=(x1jian(:,i)-x(:,i))'*(x1jian(:,i)-x(:,i));
%         ErroP2(j,i)=(x2jian(:,i)-x(:,i))'*(x2jian(:,i)-x(:,i));
%         ErroP3(j,i)=(x3jian(:,i)-x(:,i))'*(x3jian(:,i)-x(:,i));
%         ErroPc(j,i)=(xcjian(:,i)-x(:,i))'*(xcjian(:,i)-x(:,i));
%         ErroPm(j,i)=(xmjian(:,i)-x(:,i))'*(xmjian(:,i)-x(:,i));
%         ErroPd(j,i)=(xdjian(:,i)-x(:,i))'*(xdjian(:,i)-x(:,i));
%         ErroPs(j,i)=(xsjian(:,i)-x(:,i))'*(xsjian(:,i)-x(:,i));
%         ErroPBci(j,i)=(xBci(:,i)-x(:,i))'*(xBci(:,i)-x(:,i));
%     end
%     %  end
%      MSE1=sum(ErroP1)/N;
%      MSE2=sum(ErroP2)/N;
%      MSE3=sum(ErroP3)/N;
%      MSEc=sum(ErroPc)/N;
%      MSEm=sum(ErroPm)/N;
%      MSEd=sum(ErroPd)/N;
%      MSEs=sum(ErroPs)/N;
%      MSEci=sum(ErroPBci)/N;
%--------------作图----------------%
t=1:Bushu;
figure 
hold on;
polar(theta,r1,'b');
polar(theta,r2,'k');
polar(theta,r3,'r');
polar(theta,rci132,'k');
polar(theta,rci132_,'k-.');axis([-2.3,2.3,-2.3,2.3]);
% polar(theta,rci123,'b-.');
% polar(theta,rBci,'b-.');
%polar(theta,rBci_,'b-.');%  figure
%  t=50:50:Bushu;
% plot(t,MSE1(t),'r-h',t,MSE2(t),'r-s',t,MSE3(t),'r-x',t,MSEc(t),'k-^',t,MSEm(t),'g-o',t,MSEd(t),'g-d',t,MSEs(t),'g-*',t,MSEci(t),'r-v'); 
% legend('MSE1','MSE2','MSE3','MSEc','MSEm','MSEd','MSEs','MSEci');
% hold on
% t=1:Bushu;
% line([50,Bushu],[a(Bushu),a(Bushu)]);line([50,Bushu],[b(Bushu),b(Bushu)]);line([50,Bushu],[c(Bushu),c(Bushu)]);
% line([50,Bushu],[jiPm(Bushu),jiPm(Bushu)]);line([50,Bushu],[jiPd(Bushu),jiPd(Bushu)]);line([50,Bushu],[jiPs(Bushu),jiPs(Bushu)]);
% line([50,Bushu],[JBci,JBci]);line([50,Bushu],[JBci_,JBci_]);


📜📢🌈参考文献🌈📢📜

[1]乔向东. 信息融合系统中目标跟踪技术研究[D].西安电子科技大学,2003.

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
198 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
5月前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
5月前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
101 8
|
5月前
|
算法
m基于GA遗传优化的高斯白噪声信道SNR估计算法matlab仿真
**MATLAB2022a模拟展示了遗传算法在AWGN信道中估计SNR的效能。该算法利用生物进化原理全局寻优,解决通信系统中复杂环境下的SNR估计问题。核心代码执行多代选择、重组和突变操作,逐步优化SNR估计。结果以图形形式对比了真实SNR与估计值,并显示了均方根误差(RMSE),体现了算法的准确性。**
59 0
|
6月前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
5月前
|
资源调度 SoC
基于UKF无迹卡尔曼滤波的电池Soc估计matlab仿真
**摘要:** 使用MATLAB2022a,基于UKF的电池SOC估计仿真比较真实值,展示非线性滤波在电动车电池管理中的效用。电池电气模型描述电压、电流与SoC的非线性关系,UKF利用无迹变换处理非线性,通过预测和更新步骤实时估计SoC,优化状态估计。尽管UKF有效,但依赖准确模型参数。
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)