大数据量下数据库分页查询优化方案汇总

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询。对于数据库分页查询,也有很多种方法和优化的点。下面简单说一下我知道的一些方法。

准备工作


为了对下面列举的一些优化进行测试,下面针对已有的一张表进行说明。


表名:order_history

描述:某个业务的订单历史表

主要字段:unsigned int id,tinyint(4) int type

字段情况:该表一共37个字段,不包含text等大型数据,最大为varchar(500),id字段为索引,且为递增。

数据量:5709294

MySQL版本:5.7.16


线下找一张百万级的测试表可不容易,如果需要自己测试的话,可以写shell脚本什么的插入数据进行测试。


以下的 sql 所有语句执行的环境没有发生改变,下面是基本测试结果:

select count(*) from orders_history;

返回结果:5709294

三次查询时间分别为:

8903 ms

8323 ms

8401 ms

一般分页查询

一般的分页查询使用简单的 limit 子句就可以实现。limit 子句声明如下:

SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset

LIMIT 子句可以被用于指定 SELECT 语句返回的记录数。需注意以下几点:


第一个参数指定第一个返回记录行的偏移量,注意从0开始

第二个参数指定返回记录行的最大数目

如果只给定一个参数:它表示返回最大的记录行数目

第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行

初始记录行的偏移量是 0(而不是 1)


下面是一个应用实例:

select * from orders_history where type=8 limit 1000,10;

该条语句将会从表 orders_history 中查询offset: 1000开始之后的10条数据,也就是第1001条到第1010条数据(1001 <= id <= 1010)。

数据表中的记录默认使用主键(一般为id)排序,上面的结果相当于:

select * from orders_history where type=8 order by id limit 10000,10;

三次查询时间分别为:

3040 ms

3063 ms

3018 ms

针对这种查询方式,下面测试查询记录量对时间的影响:

select * from orders_history where type=8 limit 10000,1;
select * from orders_history where type=8 limit 10000,10;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 10000,1000;
select * from orders_history where type=8 limit 10000,10000;

三次查询时间如下:


查询1条记录:3072ms 3092ms 3002ms


查询10条记录:3081ms 3077ms 3032ms


查询100条记录:3118ms 3200ms 3128ms


查询1000条记录:3412ms 3468ms 3394ms


查询10000条记录:3749ms 3802ms 3696ms


另外我还做了十来次查询,从查询时间来看,基本可以确定,在查询记录量低于100时,查询时间基本没有差距,随着查询记录量越来越大,所花费的时间也会越来越多。


针对查询偏移量的测试:

select * from orders_history where type=8 limit 100,100;
select * from orders_history where type=8 limit 1000,100;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 100000,100;
select * from orders_history where type=8 limit 1000000,100;

三次查询时间如下:


查询100偏移:25ms 24ms 24ms


查询1000偏移:78ms 76ms 77ms


查询10000偏移:3092ms 3212ms 3128ms


查询100000偏移:3878ms 3812ms 3798ms


查询1000000偏移:14608ms 14062ms 14700ms


随着查询偏移的增大,尤其查询偏移大于10万以后,查询时间急剧增加。


这种分页查询方式会从数据库第一条记录开始扫描,所以越往后,查询速度越慢,而且查询的数据越多,也会拖慢总查询速度。


使用子查询优化

这种方式先定位偏移位置的 id,然后往后查询,这种方式适用于 id 递增的情况。

select * from orders_history where type=8 limit 100000,1;
select id from orders_history where type=8 limit 100000,1;
select * from orders_history where type=8 and 
id>=(select id from orders_history where type=8 limit 100000,1) 
limit 100;
select * from orders_history where type=8 limit 100000,100;

4条语句的查询时间如下:


第1条语句:3674ms


第2条语句:1315ms


第3条语句:1327ms


第4条语句:3710ms


针对上面的查询需要注意:


比较第1条语句和第2条语句:使用 select id 代替 select * 速度增加了3倍


比较第2条语句和第3条语句:速度相差几十毫秒


比较第3条语句和第4条语句:得益于 select id 速度增加,第3条语句查询速度增加了3倍


这种方式相较于原始一般的查询方法,将会增快数倍。


使用id限定优化

这种方式假设数据表的id是连续递增的,则我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:

select * from orders_history where type=2 
and id between 1000000 and 1000100 limit 100;

查询时间:15ms 12ms 9ms

这种查询方式能够极大地优化查询速度,基本能够在几十毫秒之内完成。限制是只能使用于明确知道id的情况,不过一般建立表的时候,都会添加基本的id字段,这为分页查询带来很多便利。

还可以有另外一种写法:

select * from orders_history where id >= 1000001 limit 100;

当然还可以使用 in 的方式来进行查询,这种方式经常用在多表关联的时候进行查询,使用其他表查询的id集合,来进行查询:

select * from orders_history where id in
(select order_id from trade_2 where goods = 'pen')
limit 100;

这种 in 查询的方式要注意:某些 mysql 版本不支持在 in 子句中使用 limit。


使用临时表优化

这种方式已经不属于查询优化,这儿附带提一下。


对于使用 id 限定优化中的问题,需要 id 是连续递增的,但是在一些场景下,比如使用历史表的时候,或者出现过数据缺失问题时,可以考虑使用临时存储的表来记录分页的id,使用分页的id来进行 in 查询。这样能够极大的提高传统的分页查询速度,尤其是数据量上千万的时候。


关于数据表的id说明


一般情况下,在数据库中建立表的时候,强制为每一张表添加 id 递增字段,这样方便查询。


如果像是订单库等数据量非常庞大,一般会进行分库分表。这个时候不建议使用数据库的 id 作为唯一标识,而应该使用分布式的高并发唯一 id 生成器来生成,并在数据表中使用另外的字段来存储这个唯一标识。


使用先使用范围查询定位 id (或者索引),然后再使用索引进行定位数据,能够提高好几倍查询速度。即先 *select id,然后再 select ;


本人才疏学浅,难免犯错,若发现文中有错误遗漏,望不吝赐教。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
相关文章
|
1月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
43 2
|
2天前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
|
8天前
|
存储 Oracle 关系型数据库
数据库数据恢复—ORACLE常见故障的数据恢复方案
Oracle数据库常见故障表现: 1、ORACLE数据库无法启动或无法正常工作。 2、ORACLE ASM存储破坏。 3、ORACLE数据文件丢失。 4、ORACLE数据文件部分损坏。 5、ORACLE DUMP文件损坏。
41 11
|
19天前
|
SQL 存储 BI
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
|
19天前
|
SQL 数据库
gbase 8a 数据库 SQL优化案例-关联顺序优化
gbase 8a 数据库 SQL优化案例-关联顺序优化
|
27天前
|
存储 算法 固态存储
大数据分区优化存储成本
大数据分区优化存储成本
31 4
|
1月前
|
存储 NoSQL 分布式数据库
微服务架构下的数据库设计与优化策略####
本文深入探讨了在微服务架构下,如何进行高效的数据库设计与优化,以确保系统的可扩展性、低延迟与高并发处理能力。不同于传统单一数据库模式,微服务架构要求更细粒度的服务划分,这对数据库设计提出了新的挑战。本文将从数据库分片、复制、事务管理及性能调优等方面阐述最佳实践,旨在为开发者提供一套系统性的解决方案框架。 ####
|
29天前
|
存储 大数据 Serverless
大数据增加分区优化资源使用
大数据增加分区优化资源使用
24 1
|
1月前
|
存储 SQL 数据库
深入浅出后端开发之数据库优化实战
【10月更文挑战第35天】在软件开发的世界里,数据库性能直接关系到应用的响应速度和用户体验。本文将带你了解如何通过合理的索引设计、查询优化以及恰当的数据存储策略来提升数据库性能。我们将一起探索这些技巧背后的原理,并通过实际案例感受优化带来的显著效果。
46 4
|
1月前
|
SQL druid 数据库
如何进行数据库连接池的参数优化?
数据库连接池参数优化包括:1) 确定合适的初始连接数,考虑数据库规模和应用需求;2) 调整最大连接数,依据并发量和资源状况;3) 设置最小空闲连接数,平衡资源利用和响应速度;4) 优化连接超时时间,确保系统响应和资源利用合理;5) 配置连接有效性检测,定期检查连接状态;6) 调整空闲连接回收时间,适应访问模式并配合数据库超时设置。