大数据量下数据库分页查询优化方案汇总

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询。对于数据库分页查询,也有很多种方法和优化的点。下面简单说一下我知道的一些方法。

准备工作


为了对下面列举的一些优化进行测试,下面针对已有的一张表进行说明。


表名:order_history

描述:某个业务的订单历史表

主要字段:unsigned int id,tinyint(4) int type

字段情况:该表一共37个字段,不包含text等大型数据,最大为varchar(500),id字段为索引,且为递增。

数据量:5709294

MySQL版本:5.7.16


线下找一张百万级的测试表可不容易,如果需要自己测试的话,可以写shell脚本什么的插入数据进行测试。


以下的 sql 所有语句执行的环境没有发生改变,下面是基本测试结果:

select count(*) from orders_history;

返回结果:5709294

三次查询时间分别为:

8903 ms

8323 ms

8401 ms

一般分页查询

一般的分页查询使用简单的 limit 子句就可以实现。limit 子句声明如下:

SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset

LIMIT 子句可以被用于指定 SELECT 语句返回的记录数。需注意以下几点:


第一个参数指定第一个返回记录行的偏移量,注意从0开始

第二个参数指定返回记录行的最大数目

如果只给定一个参数:它表示返回最大的记录行数目

第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行

初始记录行的偏移量是 0(而不是 1)


下面是一个应用实例:

select * from orders_history where type=8 limit 1000,10;

该条语句将会从表 orders_history 中查询offset: 1000开始之后的10条数据,也就是第1001条到第1010条数据(1001 <= id <= 1010)。

数据表中的记录默认使用主键(一般为id)排序,上面的结果相当于:

select * from orders_history where type=8 order by id limit 10000,10;

三次查询时间分别为:

3040 ms

3063 ms

3018 ms

针对这种查询方式,下面测试查询记录量对时间的影响:

select * from orders_history where type=8 limit 10000,1;
select * from orders_history where type=8 limit 10000,10;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 10000,1000;
select * from orders_history where type=8 limit 10000,10000;

三次查询时间如下:


查询1条记录:3072ms 3092ms 3002ms


查询10条记录:3081ms 3077ms 3032ms


查询100条记录:3118ms 3200ms 3128ms


查询1000条记录:3412ms 3468ms 3394ms


查询10000条记录:3749ms 3802ms 3696ms


另外我还做了十来次查询,从查询时间来看,基本可以确定,在查询记录量低于100时,查询时间基本没有差距,随着查询记录量越来越大,所花费的时间也会越来越多。


针对查询偏移量的测试:

select * from orders_history where type=8 limit 100,100;
select * from orders_history where type=8 limit 1000,100;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 100000,100;
select * from orders_history where type=8 limit 1000000,100;

三次查询时间如下:


查询100偏移:25ms 24ms 24ms


查询1000偏移:78ms 76ms 77ms


查询10000偏移:3092ms 3212ms 3128ms


查询100000偏移:3878ms 3812ms 3798ms


查询1000000偏移:14608ms 14062ms 14700ms


随着查询偏移的增大,尤其查询偏移大于10万以后,查询时间急剧增加。


这种分页查询方式会从数据库第一条记录开始扫描,所以越往后,查询速度越慢,而且查询的数据越多,也会拖慢总查询速度。


使用子查询优化

这种方式先定位偏移位置的 id,然后往后查询,这种方式适用于 id 递增的情况。

select * from orders_history where type=8 limit 100000,1;
select id from orders_history where type=8 limit 100000,1;
select * from orders_history where type=8 and 
id>=(select id from orders_history where type=8 limit 100000,1) 
limit 100;
select * from orders_history where type=8 limit 100000,100;

4条语句的查询时间如下:


第1条语句:3674ms


第2条语句:1315ms


第3条语句:1327ms


第4条语句:3710ms


针对上面的查询需要注意:


比较第1条语句和第2条语句:使用 select id 代替 select * 速度增加了3倍


比较第2条语句和第3条语句:速度相差几十毫秒


比较第3条语句和第4条语句:得益于 select id 速度增加,第3条语句查询速度增加了3倍


这种方式相较于原始一般的查询方法,将会增快数倍。


使用id限定优化

这种方式假设数据表的id是连续递增的,则我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:

select * from orders_history where type=2 
and id between 1000000 and 1000100 limit 100;

查询时间:15ms 12ms 9ms

这种查询方式能够极大地优化查询速度,基本能够在几十毫秒之内完成。限制是只能使用于明确知道id的情况,不过一般建立表的时候,都会添加基本的id字段,这为分页查询带来很多便利。

还可以有另外一种写法:

select * from orders_history where id >= 1000001 limit 100;

当然还可以使用 in 的方式来进行查询,这种方式经常用在多表关联的时候进行查询,使用其他表查询的id集合,来进行查询:

select * from orders_history where id in
(select order_id from trade_2 where goods = 'pen')
limit 100;

这种 in 查询的方式要注意:某些 mysql 版本不支持在 in 子句中使用 limit。


使用临时表优化

这种方式已经不属于查询优化,这儿附带提一下。


对于使用 id 限定优化中的问题,需要 id 是连续递增的,但是在一些场景下,比如使用历史表的时候,或者出现过数据缺失问题时,可以考虑使用临时存储的表来记录分页的id,使用分页的id来进行 in 查询。这样能够极大的提高传统的分页查询速度,尤其是数据量上千万的时候。


关于数据表的id说明


一般情况下,在数据库中建立表的时候,强制为每一张表添加 id 递增字段,这样方便查询。


如果像是订单库等数据量非常庞大,一般会进行分库分表。这个时候不建议使用数据库的 id 作为唯一标识,而应该使用分布式的高并发唯一 id 生成器来生成,并在数据表中使用另外的字段来存储这个唯一标识。


使用先使用范围查询定位 id (或者索引),然后再使用索引进行定位数据,能够提高好几倍查询速度。即先 *select id,然后再 select ;


本人才疏学浅,难免犯错,若发现文中有错误遗漏,望不吝赐教。


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
4月前
|
存储 分布式计算 大数据
MaxCompute聚簇优化推荐功能发布,单日节省2PB Shuffle、7000+CU!
MaxCompute全新推出了聚簇优化推荐功能。该功能基于 31 天历史运行数据,每日自动输出全局最优 Hash Cluster Key,对于10 GB以上的大型Shuffle场景,这一功能将直接带来显著的成本优化。
225 3
|
3月前
|
存储 SQL 分布式计算
MaxCompute 聚簇优化推荐原理
基于历史查询智能推荐Clustered表,显著降低计算成本,提升数仓性能。
266 4
MaxCompute 聚簇优化推荐原理
|
2月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
195 6
|
3月前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
185 4
|
3月前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
560 5
|
3月前
|
大数据 数据挖掘 定位技术
买房不是拍脑袋:大数据教你优化房地产投资策略
买房不是拍脑袋:大数据教你优化房地产投资策略
140 2
|
4月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
3月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
148 3
|
3月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。

热门文章

最新文章