flink cdc多种数据源安装、配置与验证(超详细总结)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS SQL Server,基础系列 2核4GB
简介: 超详细总结flink cdc多种数据源安装、配置与验证

本文目录结构

|___ 1. 前言
|___ 2. 数据源安装与配置
|__ 2.1 MySQL
|_ 2.1.1 安装
|_ 2.1.2 CDC 配置
|__ 2.2 Postgresql
|_ 2.2.1 安装
|_ 2.2.2 CDC 配置
|__ 2.3 Oracle
|_2.3.1 安装
|_2.3.2 CDC 配置
|___2.4 SQLServer
|_2.4.1 安装
|_2.4.2 CDC 配置
|___ 3. 验证
|___3.1 Flink版本与CDC版本的对应关系
|___3.2 下载相关包
|___3.3 添加cdc jar 至lib目录
|___3.4 验证


1. 前言

关于如何使用和配置flink cdc功能,其实在官方文档有相关的教程了,如下:
image.png

但是讲解的不是很详细,比如数据源怎么安装?怎么配置?都没有很详细的描述每一步骤,因此博主前面发布多篇文章以此来记录flink cdc相关数据源以及其配置相关的文章,有兴趣的同学可以参考下:

本文主要就是记录在docker下安装和配置各种数据源,以实现flink cdc的功能,包含如下常见的数据源:

数据源 版本
MySQL 8.0.25
Postgresql 10.6
Oracle 11g
SqlServer 2019

2. 数据源安装与配置

2.1 MySQL

版本:8.0.25

2.1.1 安装

Step1: 拉取mysql镜像:

docker pull mysql:8.0.25

Step2: 创建并运行 MySQL 容器

docker run -d -p 30025:3306 --name mysql8.0.25 -e MYSQL_ROOT_PASSWORD=root mysql:8.0.25

2.1.2 CDC 配置

Step1:进入正在运行的mysql容器:

docker exec -it mysql8.0.25 mysql -uroot -proot

Step2:配置 CDC

-- 启用二进制日志
mysql> SET GLOBAL log_bin = ON;

-- 设置二进制日志格式为行级别
mysql> SET GLOBAL binlog_format = 'ROW';

Step3(非必要):如果配置没生效,重启容器

docker restart mysql8.0.25

2.2 Postgresql

版本:PostgreSQL 10.6 (Debian 10.6-1.pgdg90+1)

2.2.1 安装

Step1: 拉取 PostgreSQL 10.6 版本的镜像:

docker pull postgres:10.6

Step2:创建并启动 PostgreSQL 容器,在这里,我们将把容器的端口 5432 映射到主机的端口 30028,账号密码设置为postgres,并将 pgoutput 插件加载到 PostgreSQL 实例中:

docker run -d -p 30028:5432 --name postgres-10.6 -e POSTGRES_PASSWORD=postgres postgres:10.6 -c 'shared_preload_libraries=pgoutput'

Step3: 查看容器是否创建成功:

docker ps | grep postgres-10.6

2.2.2 CDC 配置

Step1:docker进去Postgresql数据的容器:

docker exec -it postgres-10.6  bash

Step2:编辑postgresql.conf配置文件:

vi /var/lib/postgresql/data/postgresql.conf

配置内容如下:

# 更改wal日志方式为logical(方式有:minimal、replica 、logical  )
wal_level = logical  

# 更改solts最大数量(默认值为10),flink-cdc默认一张表占用一个slots
max_replication_slots = 20

# 更改wal发送最大进程数(默认值为10),这个值和上面的solts设置一样
max_wal_senders = 20     

# 中断那些停止活动超过指定毫秒数的复制连接,可以适当设置大一点(默认60s,0表示禁用)
wal_sender_timeout = 180s

Step3:重启容器:

docker restart postgres-10.6

连接数据库,如果查询一下语句,返回logical表示修改成功:

SHOW wal_level;

Step4:新建用户并赋权。使用创建容器时的账号密码(postgres/postgres)登录Postgresql数据库。

-- 创建数据库 test_db
CREATE DATABASE test_db;

-- 连接到新创建的数据库 test_db
\c test_db

-- 创建 t_user 表
CREATE TABLE "public"."t_user" (
    "id" int8 NOT NULL,
    "name" varchar(255),
    "age" int2,
    PRIMARY KEY ("id")
);

-- pg新建用户
CREATE USER test1 WITH PASSWORD 'test123';

-- 给用户复制流权限
ALTER ROLE test1 replication;

-- 给用户登录数据库权限
GRANT CONNECT ON DATABASE test_db to test1;

-- 把当前库public下所有表查询权限赋给用户
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public TO test1;

Step4:发布表:

-- 设置发布为true
update pg_publication set puballtables=true where pubname is not null;

-- 把所有表进行发布
CREATE PUBLICATION dbz_publication FOR ALL TABLES;

-- 查询哪些表已经发布
select * from pg_publication_tables;

-- 更改复制标识包含更新和删除之前值(目的是为了确保表 t_user 在实时同步过程中能够正确地捕获并同步更新和删除的数据变化。如果不执行这两条语句,那么 t_user 表的复制标识可能默认为 NOTHING,这可能导致实时同步时丢失更新和删除的数据行信息,从而影响同步的准确性)
ALTER TABLE t_user REPLICA IDENTITY FULL;

-- 查看复制标识(为f标识说明设置成功,f(表示 full),否则为 n(表示 nothing),即复制标识未设置)
select relreplident from pg_class where relname='t_user';

2.3 Oracle

版本:Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production

2.3.1 安装

Step1:拉取 oracle 11g 镜像(有6g,要等较长的时间)

docker pull registry.cn-hangzhou.aliyuncs.com/helowin/oracle_11g

Step2:执行以下命令以创建并运行 Oracle 11g 容器

docker run -d -p 30026:1521 -p 8081:8080 \
--name oracle_11g \
-e ORACLE_HOME=/home/oracle/app/oracle/product/11.2.0/dbhome_2 \
-e ORACLE_SID=helowin \
registry.cn-hangzhou.aliyuncs.com/helowin/oracle_11g

Step3:查看容器是否启动

docker ps -a|grep oracle_11g

Step4:进入容器

docker exec -it oracle_11g bash

Step5:设置账号密码

# 1. 切换至root用户(默认是oracle用户),密码为helowin
su root

# 2. 创建软链接
ln -s $ORACLE_HOME/bin/sqlplus /usr/bin

# 3.切换回oracle用户
su oracle

# 4. 登录sql plus
sqlplus /nolog
conn /as sysdba
## 4.1 修改system用户密码为system
alter user system identified by system;
## 4.2 修改sys用户密码为system
alter user sys identified by system;
## 4.3 新增一个测试用户(用户名:test,密码:test123);
create user test identified by test123;
## 4.4 将dba权限给内部管理员账号和密码
grant connect,resource,dba to test;
## 4.5 修改密码策略规则为:密码永不过期
ALTER PROFILE DEFAULT LIMIT PASSWORD_LIFE_TIME UNLIMITED;
## 4.6 修改数据库最大连接数;
alter system set processes=1000 scope=spfile;
## 4.7 最后重启数据库;
shutdown immediate;
startup;

# 5.退出
exit

2.3.2 CDC 配置

Step1:进入容器

docker exec -it oracle_11g bash

Step2:以DBA的权限登录数据库

sqlplus /nolog
CONNECT sys/system AS SYSDBA

Step3:启用日志归档

-- 设置数据库恢复文件目标大小为10G
alter system set db_recovery_file_dest_size = 10G;

-- 设置数据库恢复文件目标路径
alter system set db_recovery_file_dest = '/home/oracle/app/oracle/product/11.2.0' scope=spfile;

-- 立即关闭数据库
shutdown immediate;

-- 以mount模式启动数据库
startup mount;

-- 启用数据库归档日志模式
alter database archivelog;

-- 打开数据库,允许用户访问
alter database open;

Step4:查看日志归档是否启用(如果显示“Archive Mode”表示已经启用)

archive log list;

Step5:创建表空间

-- 以DBA的权限登录数据库
sqlplus /nolog
CONNECT sys/system AS SYSDBA
-- 创建一个名为"logminer_tbs"的表空间
-- 指定表空间的数据文件路径为"/home/oracle/app/oracle/product/11.2.0/logminer_tbs.dbf",其中"/home/oracle/app/oracle/product/11.2.0"是数据文件存储的目录,"logminer_tbs.dbf"是数据文件的文件名
-- 设置表空间的初始大小为25MB
-- 如果数据文件已经存在且可重用,将其重用,否则创建一个新的数据文件
-- 启用表空间的自动扩展功能,即当表空间空间不足时,自动增加数据文件的大小
-- 设置表空间的最大允许大小为无限,即表空间可以无限制地自动扩展
CREATE TABLESPACE logminer_tbs DATAFILE '/home/oracle/app/oracle/product/11.2.0/logminer_tbs.dbf' SIZE 25M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

Step6:创建用户并赋权

-- 创建一个名为"flinkuser"的用户,密码为"flinkpw",将其默认表空间设置为"LOGMINER_TBS",并在该表空间上设置无限配额。
CREATE USER flinkuser IDENTIFIED BY flinkpw DEFAULT TABLESPACE LOGMINER_TBS QUOTA UNLIMITED ON LOGMINER_TBS;

-- 允许"flinkuser"用户创建会话,即允许该用户连接到数据库。
GRANT CREATE SESSION TO flinkuser;

-- (不支持Oracle 11g)允许"flinkuser"用户在多租户数据库(CDB)中设置容器。
-- GRANT SET CONTAINER TO flinkuser;

-- 允许"flinkuser"用户查询V_$DATABASE视图,该视图包含有关数据库实例的信息。
GRANT SELECT ON V_$DATABASE TO flinkuser;

-- 允许"flinkuser"用户执行任何表的闪回操作。
GRANT FLASHBACK ANY TABLE TO flinkuser;

-- 允许"flinkuser"用户查询任何表的数据。
GRANT SELECT ANY TABLE TO flinkuser;

-- 允许"flinkuser"用户拥有SELECT_CATALOG_ROLE角色,该角色允许查询数据字典和元数据。
GRANT SELECT_CATALOG_ROLE TO flinkuser;

-- 允许"flinkuser"用户拥有EXECUTE_CATALOG_ROLE角色,该角色允许执行一些数据字典中的过程和函数。
GRANT EXECUTE_CATALOG_ROLE TO flinkuser;

-- 允许"flinkuser"用户查询任何事务。
GRANT SELECT ANY TRANSACTION TO flinkuser;

-- (不支持Oracle 11g)允许"flinkuser"用户进行数据变更追踪(LogMiner)。
-- GRANT LOGMINING TO flinkuser;

-- 允许"flinkuser"用户创建表。
GRANT CREATE TABLE TO flinkuser;

-- 允许"flinkuser"用户锁定任何表。
GRANT LOCK ANY TABLE TO flinkuser;

-- 允许"flinkuser"用户修改任何表。
GRANT ALTER ANY TABLE TO flinkuser;

-- 允许"flinkuser"用户创建序列。
GRANT CREATE SEQUENCE TO flinkuser;

-- 允许"flinkuser"用户执行DBMS_LOGMNR包中的过程。
GRANT EXECUTE ON DBMS_LOGMNR TO flinkuser;

-- 允许"flinkuser"用户执行DBMS_LOGMNR_D包中的过程。
GRANT EXECUTE ON DBMS_LOGMNR_D TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOG视图,该视图包含有关数据库日志文件的信息。
GRANT SELECT ON V_$LOG TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOG_HISTORY视图,该视图包含有关数据库历史日志文件的信息。
GRANT SELECT ON V_$LOG_HISTORY TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOGMNR_LOGS视图,该视图包含有关LogMiner日志文件的信息。
GRANT SELECT ON V_$LOGMNR_LOGS TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOGMNR_CONTENTS视图,该视图包含LogMiner日志文件的内容。
GRANT SELECT ON V_$LOGMNR_CONTENTS TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOGMNR_PARAMETERS视图,该视图包含有关LogMiner的参数信息。
GRANT SELECT ON V_$LOGMNR_PARAMETERS TO flinkuser;

-- 允许"flinkuser"用户查询V_$LOGFILE视图,该视图包含有关数据库日志文件的信息。
GRANT SELECT ON V_$LOGFILE TO flinkuser;

-- 允许"flinkuser"用户查询V_$ARCHIVED_LOG视图,该视图包含已归档的数据库日志文件的信息。
GRANT SELECT ON V_$ARCHIVED_LOG TO flinkuser;

-- 允许"flinkuser"用户查询V_$ARCHIVE_DEST_STATUS视图,该视图包含有关归档目标状态的信息。
GRANT SELECT ON V_$ARCHIVE_DEST_STATUS TO flinkuser;

Step7:数据库和表启用增量日志

-- 切换至flinkuser用户
sqlplus /nolog
CONNECT flinkuser/flinkpw

-- 创建customers表
CREATE TABLE customers (
    customer_id NUMBER PRIMARY KEY,
    customer_name VARCHAR2(50),
    email VARCHAR2(100),
    phone VARCHAR2(20)
) TABLESPACE LOGMINER_TBS;

-- 查看LOGMINER_TBS表空间下的所有表
select tablespace_name, table_name from user_tables
where tablespace_name = 'LOGMINER_TBS';

-- 以DBA的权限登录数据库
sqlplus /nolog
CONNECT sys/system AS SYSDBA

-- 为LOGMINER_TBS表空间下的customers表启用增强日志记录
ALTER TABLE FLINKUSER.CUSTOMERS ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS

-- 为数据库启用增强日志记录:
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

2.4 SQLServer

版本:Microsoft SQL Server 2019 (RTM-CU21) (KB5025808) - 15.0.4316.3 (X64)

2.4.1 安装

Step1:拉取SQL Server 2019 镜像

docker pull mcr.microsoft.com/mssql/server:2019-latest

Step2:运行 SQL Server 容器(密码必须是8个字符,并包含字母、数字和特殊字符,如:abc@123456 ,下面映射主机端口为30027)

docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD=abc@123456' -p 30027:1433 --name sql_server_2019 -d mcr.microsoft.com/mssql/server:2019-latest

Step3:验证 SQL Server 容器是否正在运行

docker ps -a|grep sql_server_2019

2.4.2 CDC 配置

Step1:开启SQLServer代理

## 使用root用户登录容器
docker exec -it --user root sql_server_2019 bash

## 进入容器后,执行命令启用Agent
/opt/mssql/bin/mssql-conf set sqlagent.enabled true

## 退出,重启容器
exit
docker restart sql_server_2019

Step2:创建’cdc_test’测试数据库,并使用连接工具登录该数据库,使用以下 SQL 命令启用 CDC 功能

-- 创建数据库
CREATE DATABASE cdc_test;

-- 启用CDC功能
EXEC sys.sp_cdc_enable_db;

-- 判断当前数据库是否启用了CDC(如果返回1,表示已启用)
SELECT is_cdc_enabled FROM sys.databases WHERE name = 'cdc_test';

Step3:选择要进行 CDC 跟踪的表(这里使用orders表作为演示

-- 创建示例表(orders)
CREATE TABLE orders (
     id int,
     order_date date,
     purchaser int,
     quantity int,
     product_id int,
     PRIMARY KEY ([id])
);

-- schema_name 是表所属的架构(schema)的名称。
-- table_name 是要启用 CDC 跟踪的表的名称。
-- cdc_role 是 CDC 使用的角色的名称。如果没有指定角色名称,系统将创建一个默认角色。
EXEC sys.sp_cdc_enable_table
  @source_schema = 'dbo',
  @source_name   = 'orders',
  @role_name     = 'cdc_role';

3. 验证

如果要验证flink cdc的功能,需要先下载flink的安装包,然后下载相应的cdc jar包并依赖,最后使用安装包里面的sql-client写相关的flink sql即可验证。

3.1 Flink版本与CDC版本的对应关系

下载Flink安装包以及jar包前,必须确定Flink CDC与Flink版本关系:

Flink CDC 版本 Flink 版本
1.0.0 1.11.*
1.1.0 1.11.*
1.2.0 1.12.*
1.3.0 1.12.*
1.4.0 1.13.*
2.0.* 1.13.*
2.1.* 1.13.*
2.2.* 1.13.*, 1.14.*
2.3.* 1.13.*, 1.14.*, 1.15.*, 1.16.0
2.4.* 1.13.*, 1.14.*, 1.15.*, 1.16.*, 1.17.0

本文以 Flink1.13.6 + Flink CDC 2.2.0 版本为例子演示。

3.2 下载相关包

flink 安装包下载,下载地址:https://flink.apache.org/downloads/
image.png

下载cdc相关的jar,根据自己的需求,下载相关的cdc jar:https://repo1.maven.org/maven2/com/ververica/
image.png

3.3 添加cdc jar 至lib目录

把需要验证的cdc jar放到flink安装包解压之后的lib目录(<FLINK_HOME>/lib/):
image.png

3.4 验证

使用下面的命令启动 Flink 集群:

./bin/start-cluster.sh

启动成功,可以访问 http://localhost:8081 访问到 Flink Web UI:
image.png

使用下面的命令启动 Flink SQL CLI :

./bin/sql-client.sh

展示如下页面,表示启动flink客户端成功:
image.png

执行如下FlinkSQL:

CREATE TABLE t_source_sqlserver (
   id INT,
    order_date DATE,
    purchaser INT,
    quantity INT,
    product_id INT,
    PRIMARY KEY (id) NOT ENFORCED
) WITH (
  'connector' = 'sqlserver-cdc',
  'hostname' = '10.194.183.120',
  'port' = '30027',
  'username' = 'sa',
  'password' = 'abc@123456',
  'database-name' = 'cdc_test',
  'schema-name' = 'dbo',
  'table-name' = 'orders'
);

可以看到执行成功了:
image.png

执行select 语句,以便实时查看该表的数据变动:

select * from t_source_sqlserver;

从下图,可以看出,只要修改左边的数据,会在控制台实时显示新增删除的数据。
image.png

同时,也能在Flink web页面看到任务正在运行:
image.png

最后,可以通过如下命令关闭掉Flink启动的集群:

./stop-cluster.sh
相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
1月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
936 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
6月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
643 0
|
4月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
246 1
Amoro + Flink CDC 数据融合入湖新体验
|
4月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
851 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
5月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
685 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
3月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
6月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
6月前
|
关系型数据库 MySQL 数据库
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
1174 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
|
6月前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
519 1
Flink CDC + Hologres高性能数据同步优化实践
|
7月前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
1782 45

热门文章

最新文章