17-长期存活的对象将进入老年代

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: HotSpot虚拟机中多数收集器都采用了分代收集来管理堆内存, 那内存回收时就必须能决策哪些存活对象应当放在新生代, 哪些存活对象放在老年代中。

长期存活的对象将进入老年代

HotSpot虚拟机中多数收集器都采用了分代收集来管理堆内存, 那内存回收时就必须能决策哪些存活对象应当放在新生代, 哪些存活对象放在老年代中。 为做到这点, 虚拟机给每个对象定义了一个对象年龄(Age) 计数器, 存储在对象头中 。 对象通常在Eden区里诞生, 如果经过第一次Minor GC后仍然存活, 并且能被Survivor容纳的话, 该对象会被移动到Survivor空间中, 并且将其对象年龄设为1岁。 对象在Survivor区中每熬过一次Minor GC, 年龄就增加1岁, 当它的年龄增加到一定程度(默认为15) , 就会被晋升到老年代中。 对象晋升老年代的年龄阈值, 可以通过参数-XX:MaxTenuringThreshold设置。

1.MaxTenuringThreshold=1的情况

当我们以-XX: MaxTenuringThreshold=1 记性参数设置时,来执行以下代码:

/**
 * @Des: 长期存活的对象进入老年代的测试
 * VM参数: -verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 -XX:+UseSerialGC
 * -XX:MaxTenuringThreshold=1 :当新生代对象的年龄达到1岁即可进入老年代
 * -XX:+PrintTenuringDistribution:JVM 在每次新生代GC时,打印出幸存区中对象的年龄分布。
 */
public class TestLongObjToOld {
   
   
    private static final int _1MB = 1024 * 1024;

    public static void testTenuringThreshold() {
   
   
        byte[] allocation1, allocation2, allocation3;
        allocation1 = new byte[_1MB / 4]; //256KB 什么时候进入老年代决定于XX:MaxTenuringThreshold设置
        allocation2 = new byte[4 * _1MB]; //4048KB
        allocation3 = new byte[4 * _1MB];//4048KB eden共占用了 8352KB
        allocation3 = null;  //断开引用,成为垃圾对象
        allocation3 = new byte[4 * _1MB]; //再申请分配4MB内存,放不下,触发Minor GC
    }

    public static void main(String[] args) {
   
   
        testTenuringThreshold();
    }
}

输出结果:

[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age   1:     896768 bytes,     896768 total
: 6079K->875K(9216K), 0.0036167 secs] 6079K->4971K(19456K), 0.0036538 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age   1:        584 bytes,        584 total
: 5056K->0K(9216K), 0.0008881 secs] 9152K->4968K(19456K), 0.0009051 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
Heap
 def new generation   total 9216K, used 4316K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
  eden space 8192K,  52% used [0x00000000fec00000, 0x00000000ff037058, 0x00000000ff400000)
  from space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400248, 0x00000000ff500000)
  to   space 1024K,   0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)
 tenured generation   total 10240K, used 4968K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
   the space 10240K,  48% used [0x00000000ff600000, 0x00000000ffada120, 0x00000000ffada200, 0x0000000100000000)
 Metaspace       used 3244K, capacity 4496K, committed 4864K, reserved 1056768K
  class space    used 353K, capacity 388K, committed 512K, reserved 1048576K

针对输出结果我们可以拆分来看,当allocation1和allocation2对象加载的时候,两个对象加在一起是4.25MB,Eden区都能存放下(Eden区大小9216K),没有任何问题,内存图如下:


当allocation3对象创建的时候,这时发现eden区空间不足,则会触发第一次GC:

我们先来看第一次GC的打印:

[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age   1:     896768 bytes,     896768 total
: 6079K->875K(9216K), 0.0036167 secs] 6079K->4971K(19456K), 0.0036538 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

GC: 代表发生了一次垃圾回收,前面没有Full修饰,表明这时一次Minor GC;

Allocation Failure:表明本次引起GC的原因是因为在年轻代中没有足够的空间能够存储新的数据了。

6079K->875K(9216K) 三个参数分别为:GC前该内存区域(这里是年轻代)使用容量,GC后该内存区域使用容量,该内存区域总容量。

6079K->4971K(19456K) 三个参数分别为:堆区垃圾回收前的大小,堆区垃圾回收后的大小,堆区总大小。

0.0036167 secs:代表本次新生代GC耗时

那么我们本次日志得出的结论:

  • 该次GC新生代减少了 6079 - 875 = 5204KB
  • Heap区总共减少了 6079 - 4971 = 1108KB
  • 5204KB - 1108KB = 4096KB 代表一共有 4096KB对象从年轻代转移到了老年代

ok,我们通过画图来形象的表示下:

这里请大家注意:由于我们的 allocation1对象和allocation2对象都是强引用不会被回收,所以肯定会直接放入幸存者区域,allocation1对象可以放入,但是我们的allocation2对象太大是无法放入S1区的,因此根据我们上面讲的垃圾收集器的默认担保机制,allocation2对象会直接进入到我们的老年代进行存放。 这也解释了为什么最终有4096K(4MB)大小的对象进入了老年代

当第一次GC完后Eden区就有足够的空间存放 allocation3对象了。

我们再来看第二次GC情况:

allocation3 = null; //这行代码一旦执行,那么我们的allotion3对象没有了直接引用者

如下:


接着最后一行代码开始执行:

allocation3 = new byte[4 * _1MB]; //再申请分配4MB内存,放不下,触发Minor GC

这次继续申请分配4MB大小对象放入Eden区,那么依然又会存在分配不下触发GC,继续分析如下日志:

[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age   1:        584 bytes,        584 total
: 5056K->0K(9216K), 0.0008881 secs] 9152K->4968K(19456K), 0.0009051 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

那么我们本次日志得出的结论:

  • 该次GC新生代减少了 5056- 0 = 5056KB
    • 注意:新生代直接减少到了0!代表所有幸存区S1里的对象全部转移到了老年代!(因为我们的年龄阈值设置的刚好就是1)allocation3对象是直接被回收了
  • Heap区总共减少了 9152- 4968= 4184KB
    • 主要就是我们的allocation3对象以及少量系统对象被回收了
  • 5056KB - 4184KB =872 KB 代表一共有 872KB对象从年轻代转移到了老年代

最后内存结果如下:


跟我们最后的内存日志结果匹配:

Heap
 def new generation   total 9216K, used 4316K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
  eden space 8192K,  52% used [0x00000000fec00000, 0x00000000ff037058, 0x00000000ff400000)
  from space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400248, 0x00000000ff500000)
  to   space 1024K,   0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)
 tenured generation   total 10240K, used 4968K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
   the space 10240K,  48% used [0x00000000ff600000, 0x00000000ffada120, 0x00000000ffada200, 0x0000000100000000)

2.MaxTenuringThreshold=15的情况

代码没有变化,只是JVM参数发生了改变,我们可以直接看运行后的日志结果:

[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 15)
- age   1:     877184 bytes,     877184 total
: 6079K->856K(9216K), 0.0025954 secs] 6079K->4952K(19456K), 0.0026263 secs] [Times: user=0.02 sys=0.00, real=0.00 secs] 
[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 15 (max 15)
- age   1:        728 bytes,        728 total
: 5037K->0K(9216K), 0.0009100 secs] 9133K->4949K(19456K), 0.0009267 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

注意:我们神奇的发现:在第二次GC后,新生代的占用空间变成了0! 这是尼玛啥情况!我们明明已经设置了阈值为15

这里跟这个对象年龄有另外一个规则可以让对象进入老年代,不用等待15此GC过后才可以。

那么到底是什么规则呢?我想有些同学应该已经猜到了,就是我们的动态年龄判断规则,下一篇文章我们将继续给大家带来动态年龄判断规则以及JVM的空间分配担保机制到底是怎么玩的。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
6月前
|
存储 监控 算法
垃圾回收器、垃圾回收算法、空间分配担保、JVM调优、GC回收对象的过程
垃圾回收器、垃圾回收算法、空间分配担保、JVM调优、GC回收对象的过程
|
17天前
|
缓存 算法 Java
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
这篇文章详细介绍了Java虚拟机(JVM)中的垃圾回收机制,包括垃圾的定义、垃圾回收算法、堆内存的逻辑分区、对象的内存分配和回收过程,以及不同垃圾回收器的工作原理和参数设置。
38 4
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
|
4月前
|
存储 监控 算法
(六)JVM成神路之GC基础篇:对象存活判定算法、GC算法、STW、GC种类详解
经过前面五个章节的分析后,对于JVM的大部分子系统都已阐述完毕,在本文中则开始对JVM的GC子系统进行全面阐述,GC机制也是JVM的重中之重,调优、监控、面试都逃不开的JVM话题。
103 8
|
4月前
|
Java fastjson C++
JVM内存问题之JVM中元空间持续增长并且GC无法释放的原因可能是什么
JVM内存问题之JVM中元空间持续增长并且GC无法释放的原因可能是什么
137 2
|
5月前
|
算法 Java 云计算
JVM垃圾回收的历史演进:从GC算法到垃圾回收器选择
JVM垃圾回收的历史演进:从GC算法到垃圾回收器选择
|
6月前
|
存储 算法 安全
清除你的烦恼!深入探讨垃圾回收算法、垃圾回收器和空间分配担保策略
清除你的烦恼!深入探讨垃圾回收算法、垃圾回收器和空间分配担保策略
|
存储 算法 安全
【垃圾回收器、垃圾回收算法、空间分配担保】
【垃圾回收器、垃圾回收算法、空间分配担保】
JVM垃圾回收器详解:串行回收新生代内存管理垃圾回收的触发机制
在讨论新生代垃圾回收之前,首先要解决的问题就是:谁能触发垃圾回收?何时触发垃圾回收? 从垃圾回收的角度来说,既可以进行主动回收,也可以进行被动回收。
|
存储 负载均衡 算法
6000字吃透JVM垃圾回收器:并发标记清除回收,并行的新生代回收
CMS新生代回收相比串行新生代回收最大的优化是将串行算法升级为并行算法。 并行回收在CMS中被称为ParNew。从串行到并行需要考虑的问题是:如何让多个线程并行地执行任务?如果多个并行线程任务负载不均衡该如何处理?如何判断多个线程并行执行结束?
|
算法 Java
详解gc(垃圾回收)机制六:分代垃圾回收
详解gc(垃圾回收)机制六:分代垃圾回收
206 0
详解gc(垃圾回收)机制六:分代垃圾回收