【路径优化】基于人工蜂群(ABC)算法和粒子群优化算法的组合求解路径优化问题(Matlab代码实现)

简介: 【路径优化】基于人工蜂群(ABC)算法和粒子群优化算法的组合求解路径优化问题(Matlab代码实现)

1 概述

旅行商问题是一个典型的NP - Hard 问题.由于经典算法在解决较大规模的组合或高度非线性优化问题的效率低下.近年来,许多解决旅行商的元启发式的算法被提出来,主要有神经网络(Neural Network)、模拟退火( Simulated An-nealing, SA)、遗传算法(Genetic Algorithms,GA)、蚁群优化算法(Ant Colony Optimization,ACO)、粒子群优化算法( Particle Swarm Optimiza-tion, PSO),人工蜂群算法1 ( ABC,Artificial BeeColony Algorithm)算法等一系列群体智能算法.蜂群算法是一种相对较新的群智能算法,模拟自然界蜜蜂的采蜜行为.蜜蜂使用摇摆舞定位最佳食物来源,并寻找新的食物源.基于觅食的蜂群算法利用蜜蜂寻找最优解的正反馈机理具有收敛性强、鲁棒性强等优点,将蜂群算法建立应用模型运用在路径优化问题上,提供了-种新的思路,具有一定的研究意义.


本文基于人工蜂群(ABC)算法和粒子群优化算法的组合求解路径优化问题,并用Matlab代码实现。


2 基本人工蜂群算法

土耳其Erciyes大学的karaboga教授于2005年在文献[1]中提出了--种新型的群智能优化算法——人工蜂群算法.算法包括雇佣蜂、非雇佣蜂和食物源三个基本要素{2]

雇佣蜂:也被称为引领蜂,储存着食物源的相关信息,并在采蜜后回到蜂巢中通过摇摆舞的形式蜜源的信息,其数量与食物源的数量相等.

非雇佣蜂:有跟随蜂与侦察蜂两种.跟随蜂在观察引领蜂的舞蹈后按轮盘赌法选择是否跟随.

食物源:蜜蜂的搜索目标,在算法中,蜜源的质量与收益度成正比;侦察蜂主要是发掘新的蜜源,使算法跳出局部最优.


3 粒子群优化算法

粒子群算法(带约束处理)——Python&Matlab实现

4 运行结果


5 Matlab代码实现

function Plotting(sol,model)
    xs=model.xs;
    ys=model.ys;
    xt=model.xt;
    yt=model.yt;
    xobs=model.xobs;
    yobs=model.yobs;
    robs=model.robs;
    XS=sol.XS;
    YS=sol.YS;
    xx=sol.xx;
    yy=sol.yy;
    theta=(1/24:1/12:1)'*2*pi;
    for k=1:numel(xobs)
        fill(xobs(k)+robs(k)*cos(theta),yobs(k)+robs(k)*sin(theta),[0.9 0.2 0.7]);
        hold on;
    end
% figure;
    plot(xx,yy,'g','LineWidth',2);
    plot(XS,YS,'ro');
    plot(xs,ys,'yo','MarkerSize',14,'MarkerFaceColor','b');
    plot(xt,yt,'bh','MarkerSize',14,'MarkerFaceColor','r');
    hold off;
    grid on;
    axis equal;
end


6 参考文献

[1]张平华,贾万祥,徐静,胡俊.改进人工蜂群算法在路径优化上的应用[J].哈尔滨师范大学自然科学学报,2017,33(3):8-12

[2]赵莹,孟祥,李艳娟,王一帆,赵彦超.人工蜂群优化非鲁棒路径时滞故障测试生成算法[J].重型机械,2015,0(4):18-22


7 写在最后

部分理论引用网络文献,如有侵权请联系删除。

相关文章
|
10天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
10天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
3月前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
3月前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
|
3月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
247 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
算法 数据可视化 调度
基于PSO粒子群优化的车间调度问题求解matlab仿真,输出甘特图
基于PSO粒子群优化的MATLAB仿真解决车间调度问题,输入机器与工作完成时间,输出甘特图与收敛图,实现多机器多任务最优并行调度。使用MATLAB 2022a版本运行,通过模拟鸟群觅食行为,不断更新粒子速度与位置寻找最优解,采用工序编码,总加工时间为适应度函数,实现快速收敛并可视化调度结果。
195 16
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
5月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。
|
5月前
|
数据采集 算法
基于PSO粒子群算法的三角形采集堆轨道优化matlab仿真
该程序利用PSO算法优化5个4*20矩阵中的模块采集轨迹,确保采集的物品数量及元素含量符合要求。在MATLAB2022a上运行,通过迭代寻优,选择最佳模块组合并优化轨道,使采集效率、路径长度及时间等综合指标最优。具体算法实现了粒子状态更新、需求量差值评估及轨迹优化等功能,最终输出最优轨迹及其相关性能指标。