基于标准反向传播算法的改进BP神经网络算法(Matlab代码实现)

简介: 基于标准反向传播算法的改进BP神经网络算法(Matlab代码实现)

文献来源,然后复现之:


💥1 概述

   SBP算法已成为用于训练多层感知器的标准算法,如图1所示。它是一种广义最小均方 (LMS) 算法,它最小化等于实际输出和所需输出之间误差平方和的标准。这个标准是:


详细文章下载链接:

https://ieeexplore.ieee.org/document/914537

📚2 运行结果

W1W1 =
   -0.1900   -0.7425   -2.9507
   -0.3955    0.2059   -0.8937
   -0.4751    0.5315   -1.2644
   -2.5390   -1.8319    3.2741
   -1.0816   -0.6534    0.7954
   -1.4622   -0.0331   -0.4283
   -0.3125    0.0840   -0.8470
   -0.6496   -0.2922   -0.6272
b1b1 =
    9.4243
    1.5431
    0.1860
    2.4630
    0.1097
    0.5390
    1.6335
   -0.4229
W2W2 =
   -1.6282    0.5796    0.2008    1.0366    0.9238   -0.3099    0.6122   -0.0681
b2b2 =
    0.3461
Mean Error Square at Iter = 2000eSq =
    0.0016
eSq_v =
    0.0022
eSq_t =
    0.0017
Trained
时间已过 1540.739160 秒。
No. of Iterations = 2001
Final Mean Squared Error at Iter = 2001eSq =
    0.0016
>>

部分代码:


%****Load the Input File******
  load ./nnm_train.txt
  redData = nnm_train(:,2);
  nir1Data = [nnm_train(:,3) ./ redData]';  
  nir2Data = [nnm_train(:,4) ./ redData]';
  nir3Data = [nnm_train(:,5) ./ redData]';
  pg = [ nir1Data; nir2Data; nir3Data];
  targetData = nnm_train(:,7) ;
 %*******Validate Data*******
 load ./nnm_validate.txt
  redData_v = nnm_validate(:,2);
  nir1Data_v = [nnm_validate(:,3) ./ redData_v]';  
  nir2Data_v = [nnm_validate(:,4) ./ redData_v]';
  nir3Data_v = [nnm_validate(:,5) ./ redData_v]';
  targetData_v = nnm_validate(:,7) ;
  pValidate = [nir1Data_v; nir2Data_v; nir3Data_v];
 %*******Test Data*******
 load ./nnm_test.txt
  redData_t = nnm_test(:,2);
  nir1Data_t = [nnm_test(:,3) ./ redData_t]';  
  nir2Data_t = [nnm_test(:,4) ./ redData_t]';
  nir3Data_t = [nnm_test(:,5) ./ redData_t]';
  targetData_t = nnm_test(:,7) ;
  pTest = [nir1Data_t; nir2Data_t; nir3Data_t];
%---Plot the Original Function----
    pa = 1 : length(targetData_t);
    actLine = 0:0.1:0.8; 
    subplot(2,1,2), plot (actLine, actLine); legend('Actual');%scatter(targetData_t, targetData_t,'^b');
    hold on
    %-----Randomized First Layer Weights & Bias-------
    fprintf( 'Initial Weights and Biases');
  %****3-8-1******
     W1 = [ -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand;  -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand;...
              -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand]'; %Uniform distribution [-0.5 0.5]
     b1 = [ -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand]';  
     W2 = [ -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand -0.5+rand];
  %-----Randomized Second Layer Bias------
     b2 = [ -0.5+rand ];
    if (lambda == 0) % Save the Weights and Bias on SBP
        W1_initial = W1;
        b1_initial = b1;
        W2_initial = W2;
        b2_initial = b2;
    else      % Reuse the Weights and Bias on MBP
        W1 = W1_initial;
        b1 = b1_initial;
        W2 = W2_initial;
        b2 = b2_initial;
    end
    %-----RandPermutation of Input Training Set-------
    j = randperm(length(targetData)); 
    j_v = randperm(length(targetData_v)); 
    j_t = randperm(length(targetData_t)); 
    %--Set Max. Iterations---
    maxIter = 2000;
    tic
    for train = 1 : maxIter +1   
      eSq = 0; eSq_v = 0; eSq_t = 0;
      % **** Mean Square Error ****
      %if ( train <= maxIter )
          for p = 1 : length(targetData)
             n1 = W1*pg(:,p)+ b1 ;
             a1 = logsig(n1); 
             a2 = poslin( W2 * a1  + b2 ); 
             e = targetData(p) - a2 ;
             eSq = eSq + (e^2);
          end
           eSq = eSq/length(targetData);
           %*******Validate Error**********
           for p = 1 : length(targetData_v)
             n1 = W1*pValidate(:,p)+ b1 ;
             a1 = logsig(n1); 
             a2 = poslin( W2 * a1  + b2 ); 
             e = targetData_v(p) - a2 ;
             eSq_v = eSq_v + (e^2);
           end
            eSq_v = eSq_v/length(targetData_v);
          %********Use Validate Error for Early Stopping********
           if ( train > 200 )
               earlyStopCount = earlyStopCount + 1;
              % fprintf('EarlyStop = %d', earlyStopCount);
               if (earlyStopCount == 50)
                       if ( (prev_eSq_v - eSq_v) < 0 ) 
                            W2 = W2_25;
                            b2 = b2_25;
                            W1 = W1_25;
                            b1 = b1_25;
                          break;
                       end
                  prev_eSq_v = eSq_v;   % Store previous validation error
                  earlyStopCount = 0;  % Reset Early Stopping
                  %----Save the weights and biases-------
                    disp('Saving'); eSq
                  W2_25 = W2;
                  b2_25 = b2;
                  W1_25 = W1;
                  b1_25 = b1;
               end
           else
                % ----Initialize the Weights----
              if ( train == 200 )
                  W2_25 = W2;
                  b2_25 = b2;
                  W1_25 = W1;
                  b1_25 = b1;
               end
               prev_eSq_v = eSq_v;   % Store previous validation error
           end
           %*******Test Error**********
           for p = 1 : length(targetData_t)
             n1 = W1*pTest(:,p)+ b1 ;
             a1 = logsig(n1); 
             a2 = poslin( W2 * a1  + b2 ); 
             e = targetData_t(p) - a2 ;
             eSq_t = eSq_t + (e^2);
           end
            eSq_t = eSq_t/length(targetData_t);
             if (train == 1 || mod (train, 100) == 0   )
               fprintf( 'Weights and Biases at Iter = %d\n',train);
                fprintf('W1');
                 (W1)
                fprintf('b1')
                 b1
                fprintf('W2')
                 W2
                fprintf('b2')
                 b2
               fprintf( 'Mean Error Square at Iter = %d',train);
               eSq
               eSq_v
               eSq_t
           end
           subplot(2,1,1), 
           xlabel('No. of Iterations');
           ylabel('Mean Square Error');
           title('Convergence Characteristics ');
           loglog(train, eSq, '*r'); hold on
           loglog(train, eSq_v, '*g'); hold on
           loglog(train, eSq_t, '*c'); hold on
           legend('Training Error', 'Validation Error', 'Testing Error');
           %************Train Data**********************
           %  Update only when the error is decreasing
      %    if ( earlyStopCount == 0 ) 
              for p = 1 : length(targetData)
                %----Output of the 1st Layer-----------
                n1 = W1*pg(:,j(p))+ b1 ;
                a1 = logsig(n1)  ; 
                %-----Output of the 2nd Layer----------
                n2 = W2 * a1  + b2;
                a2 =  (poslin( n2 )); 
                %a2 =  (logsig( n2 ));
                 %-----Error-----
                    t = targetData(j(p));
                    e = t - a2;
                 %******CALCULATE THE SENSITIVITIES************
                    %-----Derivative of logsig function----
                    %f1 = dlogsig(n1,a1)  
                   % f1 =  [(1-a1(1))*a1(1) 0; 0 (1-a1(2))*a1(2)] ; 
                    f1 = diag((1-a1).*a1); 
                    %-----Derivative of purelin function---
                    f2 = 1;
                    %f2 = diag((1-a2).*a2);
                    %------Last Layer (2nd) Sensitivity----
                    S2 = -2 * f2 * e;
                    S2mbp = ((t)-n2);
                    %------First Layer Sensitivity---------
                    S1 =   f1 *(W2' * S2);
                    S1mbp = f1 * (W2' * S2mbp);
                %******UPDATE THE WEIGHTS**********************
                    %-----Second Layer Weights & Bias------
                    W2 = W2 - (alpha * S2*(a1)') - (alpha * lambda * S2mbp *(a1)');
                    b2 = b2 - alpha * S2 - (alpha * lambda * S2mbp);
                    %-----First Layer Weights & Bias-------
                    W1 = W1 - alpha * S1*(pg(:,j(p)))' - (alpha * lambda * S1mbp *(pg(:,j(p)))');
                    b1 = b1 - alpha * S1 - (alpha * lambda * S1mbp );
               % end
              end
          %end 
          % End of 21 Input Training Sets
           % ********** Function Apporx. *****************
          if (train == 1 || mod (train, 100) == 0 || train == maxIter )
               disp('Trained');
               subplot(2,1,2), 
               xlabel('Actual Fraction of Weeds in 3 sq feet of grass area');
               ylabel('Estimated Fraction of Weeds in 3 sq feet of grass area');
               title('Correlation of Estimated Value with respect to the Actual Function using Standard Backpropagation');
               legend('Estimated');
            for p = 1 : length(targetData_t)
               n1 = W1*pTest(:,p)+ b1 ;       % Test Data
               a1 = logsig(n1)  ; 
               a2(p) =   (poslin( W2 * a1  + b2 )); 
            end %end for
            %scatter(targetData_t, a2); hold on;
          end 
    end
    toc
    %-------End of Iterations------------
    %***Plot of Final Function******
     subplot(2,1,2),
     for p = 1 : length(targetData_t)
               n1 = W1*pTest(:,p)+ b1 ;  % Test Data
               a1 = logsig(n1)  ; 
               a2(p) =   (poslin( W2 * a1  + b2 )); 
     end %end for


🎉3 参考文献

[1]S. Abid, F. Fnaiech and M. Najim, "A fast feedforward training algorithm using a modified form of the standard backpropagation algorithm," in IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 424-430, March 2001, doi: 10.1109/72.914537.


🌈4 Matlab代码实现

相关文章
|
2天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
3天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
4天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
3天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
18 3
|
11天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
15 3
|
9天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
190 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
122 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
下一篇
无影云桌面