【Python爬虫】用urllib请求一个网页,响应的content中中文为16进制,如何转换为中文

简介: 用urllib请求一个网页,响应的content中中文为16进制,如何转换为中文

环境:WIN10+Python3.6

代码:​

#~ coding=utf-8
#~ 使用Pyton内建模块 urllib 请求一个 URL 代码示例
import ssl

from urllib.request import Request
from urllib.request import urlopen

#使用ssl创建未经验证的上下文,在urlopen中传入上下文参数
context = ssl._create_unverified_context()

#~ HTTP请求
request = Request(url = 'https://me.csdn.net/chengyikang20',
                  method = 'GET',
                  headers = {
   
   'Host':'me.csdn.net'},
                  data = None)

#~ HTTP响应
response = urlopen(request, context=context)
headers = response.info()#响应头
content = response.read()#响应体
code = response.getcode()#状态码

print('headers='+str(headers)+'\n\n')
print('content='+str(content)+'\n\n')
print('code='+str(code)+'\n')

输出结果:
20190106103150846.png
可以看出中文字符转换为16进制,不好看。

解决方法:
很简单,只需要将read()用‘utf-8’解码即可。
​​

content = response.read().decode('utf-8')#响应体

效果:
20190106103927592.png
可以看到 这样的输出更加美观,可读性强。

相关文章
|
14天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
15天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
16天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
12天前
|
JSON API 数据格式
Python中获取HTTP请求响应体的详解
本文介绍了如何使用Python的`requests`和`urllib`库发送HTTP请求并处理响应体。`requests`库简化了HTTP请求过程,适合快速开发;`urllib`库则更为底层,适用于性能要求较高的场景。文章详细演示了发送GET请求、处理JSON响应等常见操作。
|
11天前
|
数据采集 前端开发 JavaScript
除了网页标题,还能用爬虫抓取哪些信息?
爬虫技术可以抓取网页上的各种信息,包括文本、图片、视频、链接、结构化数据、用户信息、价格和库存、导航菜单、CSS和JavaScript、元数据、社交媒体信息、地图和位置信息、广告信息、日历和事件信息、评论和评分、API数据等。通过Python和BeautifulSoup等工具,可以轻松实现数据抓取。但在使用爬虫时,需遵守相关法律法规,尊重网站的版权和隐私政策,合理控制请求频率,确保数据的合法性和有效性。
|
17天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
21天前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
7天前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
38 0
|
23天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
68 6
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
188 4
下一篇
无影云桌面