Hello,我们又见面了,时间过的好快啊,转眼间也已经写了这么多份博客了,在接下来的一年里,小编也会认真学习的敲代码,我们一起进步,那今天开始讲我们的指针,指针这一章节在C语言的学习中是比较难的一章节,废话不多说,开始我们的学习吧。
1. 指针是什么?
指针是什么?
指针理解的2个要点:
- 指针是内存中一个最小单元的编号,也就是地址
- 平时口语中说的指针,通常指的是指针变量,是用来存放内存地址的变量
总结:指针就是地址,口语中说的指针通常指的是指针变量
我们把一个地址存到内存中,每一个内存单元都对应相应的编号,其单位是一个字节,而我们的指针就是来存放地址的
我们可以通过&(取地址操作符)取出变量的内存其实地址,把地址可以存放到一个变量中,这个变量就是指针变量
#include <stdio.h> int main() { int a = 10;//在内存中开辟一块空间 int *p = &a;//这里我们对变量a,取出它的地址,可以使用&操作符。 //a变量占用4个字节的空间,这里是将a的4个字节的第一个字节的地址存放在p变量 中,p就是一个之指针变量。 return 0; }
总结:
指针变量,用来存放地址的变量。(存放在指针中的值都被当成地址处理)。
那这里的问题是:
一个小的单元到底是多大?(1个字节)
如何编址?
经过仔细的计算和权衡我们发现一个字节给一个对应的地址是比较合适的。
对于32位的机器,假设有32根地址线,那么假设每根地址线在寻址的时候产生高电平(高电压)和低电
平(低电压)就是(1或者0);
那么32根地址线产生的地址就会是多少呢
我们可以这样理解,32根地址线的话,我们每根地址线上都可以用0和1来表示
那我么可以写成
00000000000000000000000000000000
00000000000000000000000000000001
00000000000000000000000000000010
10000000000000000000000000000000
10000000000000000000000000000001
…
…
1111111111111111111111111111111111111
一直这样下去,就相当于2的32次存储方式,2的32次是多少呢
(2^32Byte == 2^32/1024KB == 232/1024/1024MB==232/1024/1024/1024GB == 4GB) 4G的空闲进行编址。
这里我们就明白:
在32位的机器上,地址是32个0或者1组成二进制序列,那地址就得用4个字节的空间来存储,所以
一个指针变量的大小就应该是4个字节。
那如果在64位机器上,如果有64个地址线,那一个指针变量的大小是8个字节,才能存放一个地址。
2. 指针和指针类型
我们都知道,变量有不同的类型,整形,浮点型等。那指针有没有类型呢?
答案是有的
int num = 10; p = #
当我们看到上面的代码的时候,取出num的地址存放在p中,那大家思考一下我们的p指针类型应该是啥呢。
char *pc = NULL; int *pi = NULL; short *ps = NULL; long *pl = NULL; float *pf = NULL; double *pd = NULL;
char* 类型的指针是为了存放 char 类型变量的地址。
short* 类型的指针是为了存放 short 类型变量的地址。
int* 类型的指针是为了存放 int 类型变量的地址。
看到这里我们是否有疑问,就是我们定义指针变量的类型,虽然它的大小是相同,但是我们有没有想过我们为什么要这样定义呢
答案是指针类型决定加1走多少,就好比一个人腿长和一个人腿短,大家都是一步,但是步长不一样,这就是我们指针变量类型的作用,我们用代码让大家更好的理解
2.1 指针±整数
#include <stdio.h> //演示实例 int main() { int n = 10; char *pc = (char*)&n; int *pi = &n; printf("%p\n", &n); printf("%p\n", pc); printf("%p\n", pc+1); printf("%p\n", pi); printf("%p\n", pi+1); return 0; }
第一个&n,取出的是整个整型的大小,虽然它的地址和别的一样,但是它是变量n的整个变量,占四个字节,所以它加1跳过的是四个地址
第二个pc则是整型变量四个字节的第一个字节存储的地址,所以它加1跳过的是一个地址
pi也是整个n变量的地址,而且我们用一个整型指针来接收,那么它加1跳过的也是四个字节大小,一字节就是一个地址
总结:
指针的类型决定了,对指针解引用的时候有多大的权限(能操作几个字节)。
比如: char* 的指针解引用就只能访问一个字节,而 int* 的指针的解引用就能访问四个字节。
3. 野指针
概念: 野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)
3.1 野指针成因
- 指针未初始化
#include <stdio.h> int main() { int *p;//局部变量指针未初始化,默认为随机值 *p = 20; return 0; }
我们没有定义*p指针变量的类型
- 2指针越界访问
#include <stdio.h> int main() { int arr[10] = {0}; int *p = arr; int i = 0; for(i=0; i<=11; i++) { //当指针指向的范围超出数组arr的范围时,p就是野指针 *(p++) = i; } return 0; }
我们的数组是只放了十个元素,但是我们访问的范围超出了数组的范围
而且在这里解引用后面地址的内容是产生的就是我们这个数组地址后面地址的内容,可能是随机数
在这里小编举个比喻来比喻野指针,野指针其实是一个恶狗,如果不合理利用的话,会造成不可逆的结果,但是我们只要用绳子把他捆住,这样他就没事了,而我们这里通常用NULL(空指针)来当成绳子.
- 如何规避野指针
- 指针初始化
- 小心指针越界
- 指针指向空间释放即使置NULL
- 避免返回局部变量的地址
- 指针使用之前检查有效性
#include<stdio.h> int* test() { int a = 10; return &a; } int main() { int* p = test(); printf("%p", p); return 0; }
#include<stdio.h> int* test() { int a = 10; return &a; } int main() { int* p = test(); *p = 100; return 0; }
我们也要避免上面的代码,因为局部变量出作用域自动销毁,但是我们的地址不会,会在最后才销毁,这里我们后面讲函数栈帧的时候,我会给大家仔细分析