PyTorch 初级教程:构建你的第一个神经网络

简介: PyTorch 是一个在研究领域广泛使用的深度学习框架,提供了大量的灵活性和效率。本文将向你介绍如何使用 PyTorch 构建你的第一个神经网络。

PyTorch 是一个在研究领域广泛使用的深度学习框架,提供了大量的灵活性和效率。本文将向你介绍如何使用 PyTorch 构建你的第一个神经网络。

一、安装 PyTorch

首先,我们需要安装 PyTorch。PyTorch 的安装过程很简单,你可以根据你的环境(操作系统,Python 版本,是否使用 GPU 等)在 PyTorch 的官方网站生成相应的安装命令。以下是一种常见的安装命令:

pip install torch torchvision

二、Tensor

在 PyTorch 中,基本的数据结构是 Tensor(张量)。Tensor 和 NumPy 的数组很相似,但它还可以在 GPU 上运行以加速计算。以下是创建 Tensor 的一些方法:

import torch

# 创建一个未初始化的 5x3 矩阵
x = torch.empty(5, 3)
print(x)

# 创建一个随机初始化的 5x3 矩阵
x = torch.rand(5, 3)
print(x)

# 创建一个全部为 0,数据类型为 long 的矩阵
x = torch.zeros(5, 3, dtype=torch.long)
print(x)

# 创建 tensor 并直接使用数据初始化
x = torch.tensor([5.5, 3])
print(x)

三、神经网络

在 PyTorch 中,我们使用 torch.nn 包来构建神经网络。nn 依赖于 autograd 来定义和计算梯度。nn.Module 包含神经网络的层,以及返回 outputforward(input) 方法。

让我们定义一个简单的前馈神经网络:

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 输入图像为单通道,输出通道为 6,3x3 正方形卷积核
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 6 * 6, 120)  # 6*6 是图像维度
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # 在 2x2 窗口上进行最大池化
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # 如果是方阵,只需要指定一个数字
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # 所有维度除了批量维度
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

net = Net()
print(net)

你刚刚定义了一个前馈函数,在它里面(以及只在它里面)我们使用了 Tensor 的任意操作。backward 函数(在这里是 autograd)将会自动定义,你可以在 forward 函数中使用任何针对 Tensor 的操作。

通过以上的简单介绍,我们相信你已经对如何在 PyTorch 中构建神经网络有了一个基本的理解。在后续的文章中,我们将深入讨论如何训练神经网络,以及如何使用数据加载器,等等。

相关文章
|
6天前
|
前端开发 JavaScript 开发者
JavaScript:构建动态网络的引擎
JavaScript:构建动态网络的引擎
|
6天前
|
安全 网络协议 算法
Nmap网络扫描工具详细使用教程
Nmap 是一款强大的网络发现与安全审计工具,具备主机发现、端口扫描、服务识别、操作系统检测及脚本扩展等功能。它支持多种扫描技术,如 SYN 扫描、ARP 扫描和全端口扫描,并可通过内置脚本(NSE)进行漏洞检测与服务深度枚举。Nmap 还提供防火墙规避与流量伪装能力,适用于网络管理、渗透测试和安全研究。
88 1
|
2月前
|
机器学习/深度学习 算法 量子技术
GQNN框架:让Python开发者轻松构建量子神经网络
为降低量子神经网络的研发门槛并提升其实用性,本文介绍一个名为GQNN(Generalized Quantum Neural Network)的Python开发框架。
56 4
GQNN框架:让Python开发者轻松构建量子神经网络
|
2月前
|
JSON 监控 API
在线网络PING接口检测服务器连通状态免费API教程
接口盒子提供免费PING检测API,可测试域名或IP的连通性与响应速度,支持指定地域节点,适用于服务器运维和网络监控。
|
6天前
|
人工智能 监控 数据可视化
如何破解AI推理延迟难题:构建敏捷多云算力网络
本文探讨了AI企业在突破算力瓶颈后,如何构建高效、稳定的网络架构以支撑AI产品化落地。文章分析了典型AI IT架构的四个层次——流量接入层、调度决策层、推理服务层和训练算力层,并深入解析了AI架构对网络提出的三大核心挑战:跨云互联、逻辑隔离与业务识别、网络可视化与QoS控制。最终提出了一站式网络解决方案,助力AI企业实现多云调度、业务融合承载与精细化流量管理,推动AI服务高效、稳定交付。
|
16天前
|
机器学习/深度学习 算法 搜索推荐
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
72 0
从零开始构建图注意力网络:GAT算法原理与数值实现详解
|
2月前
|
监控 安全 Go
使用Go语言构建网络IP层安全防护
在Go语言中构建网络IP层安全防护是一项需求明确的任务,考虑到高性能、并发和跨平台的优势,Go是构建此类安全系统的合适选择。通过紧密遵循上述步骤并结合最佳实践,可以构建一个强大的网络防护系统,以保障数字环境的安全完整。
77 12
|
3月前
|
JSON 编解码 API
Go语言网络编程:使用 net/http 构建 RESTful API
本章介绍如何使用 Go 语言的 `net/http` 标准库构建 RESTful API。内容涵盖 RESTful API 的基本概念及规范,包括 GET、POST、PUT 和 DELETE 方法的实现。通过定义用户数据结构和模拟数据库,逐步实现获取用户列表、创建用户、更新用户、删除用户的 HTTP 路由处理函数。同时提供辅助函数用于路径参数解析,并展示如何设置路由器启动服务。最后通过 curl 或 Postman 测试接口功能。章节总结了路由分发、JSON 编解码、方法区分、并发安全管理和路径参数解析等关键点,为更复杂需求推荐第三方框架如 Gin、Echo 和 Chi。
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
220 17
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
174 10

热门文章

最新文章

推荐镜像

更多