基于LSTM深度学习网络的人员行走速度识别matlab仿真,以第一视角视频为样本进行跑或者走识别

简介: 基于LSTM深度学习网络的人员行走速度识别matlab仿真,以第一视角视频为样本进行跑或者走识别

1.算法理论概述
人员行走速度是衡量人体运动能力和身体健康的重要指标之一。目前,常见的人员行走速度识别方法主要基于传感器或摄像头获取的数据,如加速度计数据、GPS数据和视频数据等等。其中,基于视频数据的方法因为其易于获取和处理而备受关注。但是,传统的基于特征提取的方法往往需要手工选择特征并进行复杂的计算,存在着一定的局限性。近年来,深度学习技术的快速发展为人员行走速度识别提供了新的思路和方法。

   出了一种基于LSTM深度学习网络的人员行走速度识别方法,该方法使用第一视角视频作为样本,能够对人员的行走速度进行准确识别。该方法首先对视频进行预处理,包括视频分帧、图像去噪和图像增强等步骤。然后,使用LSTM深度学习网络对处理后的视频进行特征提取和分类。实验结果表明,该方法能够对行走速度进行准确识别,并且表现优于传统的基于特征提取的方法。
  人员行走速度识别是一个多学科交叉的问题,涉及到计算机视觉、模式识别、信号处理和运动学等多个领域。目前,已有一些关于人员行走速度识别的研究成果,主要包括传统的基于特征提取的方法和深度学习方法。

   传统的基于特征提取的方法主要包括基于模板匹配的方法、基于光流的方法和基于特征点的方法。其中,基于模板匹配的方法通过比较视频帧之间的相似度来估计人员行走速度,但是该方法对视频质量和背景干扰比较敏感。基于光流的方法通过计算视频帧之间的光流场来估计人员的运动速度,但是该方法对纹理信息的要求比较高。基于特征点的方法通过提取视频帧中的特征点并计算其运动轨迹来估计人员的运动速度,但是该方法对噪声和背景干扰比较敏感。

   近年来,深度学习技术的快速发展为人员行走速度识别提供了新的思路和方法。目前,基于深度学习的人员行走速度识别方法主要包括基于CNN的方法和基于LSTM的方法。其中,基于CNN的方法通过将视频帧输入到卷积神经网络中进行特征提取和分类,但是该方法对视频帧之间的时序信息没有充分利用。基于LSTM的方法则可以充分利用视频帧之间的时序信息,通过将视频帧序列输入到LSTM网络中进行特征提取和分类,已经在人员行走速度识别中得到了广泛应用。
   本文的人员行走速度识别方法主要分为两个部分:视频预处理和LSTM网络训练和测试。视频预处理包括视频分帧、图像去噪和图像增强等步骤,LSTM网络训练和测试则包括LSTM网络结构设计、特征提取和分类三个步骤。下面将分别对这两个部分进行详细介绍。

1.1 视频预处理
视频预处理是保证人员行走速度识别准确性的重要步骤。本文的视频预处理主要包括以下三个步骤:

(1)视频分帧:将视频分解成一系列的图像帧,每个图像帧代表视频中的一个时间点。

(2)图像去噪:由于视频采集过程中可能会受到噪声干扰,因此需要对图像进行去噪处理。本文采用了基于小波变换的去噪方法,通过选择合适的小波基函数和阈值来去除图像中的噪声。

(3)图像增强:为了提高视频质量,本文采用了基于直方图均衡化的图像增强方法,通过拉伸图像直方图来增强图像的对比度和细节。

1.2 LSTM网络训练和测试
LSTM网络是一种递归神经网络,可以有效处理具有时序信息的数据。本文采用了基于LSTM的方法对人员行走速度进行识别。本文的LSTM网络结构如图1所示,包括输入层、LSTM层、全连接层和输出层四个部分。

(1)输入层:输入层接收预处理后的视频图像帧序列作为输入。

(2)LSTM层:LSTM层是本文的核心部分,用于提取视频帧序列中的时序特征。本文采用了两层LSTM结构,每一层包括128个LSTM单元,采用dropout技术防止过拟合。

(3)全连接层:全连接层将LSTM层的输出转化为固定长度的特征向量,本文采用了一个128维的全连接层。

(4)输出层:输出层用于将特征向量映射到行走速度的类别标签上。本文采用了softmax函数作为输出层的激活函数,输出层的神经元数目为行走速度类别数。

    在训练阶段,本文使用交叉熵作为损失函数,采用随机梯度下降法(SGD)进行优化。在测试阶段,本文使用训练好的LSTM模型对新的视频帧序列进行预测,最终输出行走速度的类别标签。

2.算法运行软件版本
MATLAB2022a

  1. 算法运行效果图预览

18de184ae8f7e9df797aff2f05323fc7_82780907_202307261507360678787138_Expires=1690355856&Signature=CL3xP%2F%2FcfzXsFOgHVXuoQYOYR6U%3D&domain=8.png
dbda9a2863b9fadb2d04009bdd626bf5_82780907_202307261507360709717167_Expires=1690355856&Signature=Dzn39ct4jbZD3mw1zs68r7OBryQ%3D&domain=8.png

474ccd21f0820a88717d2499e7a0953b_82780907_202307261507360615482223_Expires=1690355856&Signature=1PSG7hKuln0ZYILQh3Yt78C8eIY%3D&domain=8.png

4.部分核心程序

```numFeatures = size(R,1);
numClasses = 2;
% 定义LSTM网络的结构
layers = [
sequenceInputLayer(numFeatures,'Name','sequence')
lstmLayer(1500,'OutputMode','last','Name','lstm')
dropoutLayer(0.5,'Name','drop')
fullyConnectedLayer(numClasses,'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classification')];

miniBatchSize = 8;
numData = numel(seqTrainRun);
Epochs = floor(numData / miniBatchSize)*3;
% 定义训练选项
options = trainingOptions('adam', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpoch',25, ...
'InitialLearnRate',1e-3, ...
'GradientThreshold',2, ...
'Shuffle','every-epoch', ...
'ValidationData',{seqValidation,labelsValidation}, ...
'ValidationFrequency',Epochs, ...
'Plots','training-progress', ...
'Verbose',false);
% 训练LSTM网络
[netLSTM,info] = trainNetwork(seqTrain,labelsTrain,layers,options);

% 对验证集进行预测并计算准确率
YPred = classify(netLSTM,seqValidation,'MiniBatchSize',miniBatchSize);
accuracy = mean(YPred == labelsValidation)
% 显示预测结果和真实结果的混淆矩阵
disp('识别结果-真实结果');
[YPred,labelsValidation]
confusionchart(labelsValidation,YPred)

% 在一个新窗口中播放视频,并在视频中显示预测结果
figure;
for i = 351:numFrames
RunF = readFrame(RunV);
WalkF = readFrame(WalkV);
subplot(121);
imshow(RunF);
title(['预测结果:',YPred(i-350)]);
drawnow
subplot(122);
imshow(WalkF)
title(['预测结果:',YPred(i-350+150)]);
drawnow
pause(0.5)
end
hold off

```

相关文章
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
86 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
12天前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
22天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
100 17
|
3月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
67 10