HUAWEI永远滴神!华为顶级网络专家总结出了这份网络协议开源手册

简介: 网络协议就是网络中(包括互联网)传递、管理信息的一些规范。如同人与人之间相互交流是需要遵循一定的规矩一样,计算机之间的相互通信需要共同遵守一定的规则,这些规则就称为网络协议。

什么是网络协议?

网络协议就是网络中(包括互联网)传递、管理信息的一些规范。如同人与人之间相互交流是需要遵循一定的规矩一样,计算机之间的相互通信需要共同遵守一定的规则,这些规则就称为网络协议。

华为作为国内超一线的互联网企业,对国内的编程行业发展起到了至关重要的角色,作为国内使用网络协议这门技术最多的企业,对网络协议有这独家的理解!

下面就给大家分享一份由华为顶级工程师写出来的网络协议手册,需要的小伙伴可以点击此处来获取就可以了!

网络协议手册

目录总览

内容展示:

本手册内容包含了:通信协议概述﹒从二层到三层﹒重要的传输层﹒常用的应用层.陌生的数据中心﹒云计算中的网络﹒容器技术中的网络﹒微服务相关协议﹒网络协议知识串讲﹒等所有关于计算机网络,网络协议的知识点!

  • 为什么要学习网络协议?

  • 从物理层到MAC层

  • tcp

  • HTTP请求报文的构建

  • 什么是 DNS服务器

  • 从物理机到虚拟机

  • 容器网络

  • 数据中心内部是如何相互调用的

  • 网络协议

就给大家展示了一小部分内容截图,具体的内容可以点击此处来获取就可以了!

相关文章
|
1月前
|
Linux 虚拟化 iOS开发
GNS3 v3.0.5 - 开源免费网络模拟器
GNS3 v3.0.5 - 开源免费网络模拟器
160 3
GNS3 v3.0.5 - 开源免费网络模拟器
|
2月前
|
人工智能 搜索推荐 开发者
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
OpenAI最新开源的BrowseComp基准包含1266个高难度网络检索问题,覆盖影视、科技、艺术等九大领域,其最新Deep Research模型以51.5%准确率展现复杂信息整合能力,为AI代理的浏览能力评估建立新标准。
131 4
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
|
4月前
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
296 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
YOLOv11改进策略【模型轻量化】| 替换华为的极简主义骨干网络:VanillaNet
YOLOv11改进策略【模型轻量化】| 替换华为的极简主义骨干网络:VanillaNet
264 16
YOLOv11改进策略【模型轻量化】| 替换华为的极简主义骨干网络:VanillaNet
|
4月前
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
124 2
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
|
5月前
|
数据采集 人工智能 自然语言处理
FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据
FireCrawl 是一款开源的 AI 网络爬虫工具,专为处理动态网页内容、自动爬取网站及子页面而设计,支持多种数据提取和输出格式。
1684 20
FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
PaSa:字节跳动开源学术论文检索智能体,自动调用搜索引擎、浏览相关论文并追踪引文网络
PaSa 是字节跳动推出的基于强化学习的学术论文检索智能体,能够自动调用搜索引擎、阅读论文并追踪引文网络,帮助用户快速获取精准的学术文献。
414 15
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
RT-DETR改进策略【模型轻量化】| 替换华为的极简主义骨干网络:VanillaNet
RT-DETR改进策略【模型轻量化】| 替换华为的极简主义骨干网络:VanillaNet
139 0
|
7月前
|
机器学习/深度学习
NeurIPS 2024:标签噪声下图神经网络有了首个综合基准库,还开源
NoisyGL是首个针对标签噪声下图神经网络(GLN)的综合基准库,由浙江大学和阿里巴巴集团的研究人员开发。该基准库旨在解决现有GLN研究中因数据集选择、划分及预处理技术差异导致的缺乏统一标准问题,提供了一个公平、用户友好的平台,支持多维分析,有助于深入理解GLN方法在处理标签噪声时的表现。通过17种代表性方法在8个常用数据集上的广泛实验,NoisyGL揭示了多个关键发现,推动了GLN领域的进步。尽管如此,NoisyGL目前主要适用于同质图,对异质图的支持有限。
153 7