jvm之垃圾回收相关概念解读

简介: jvm之垃圾回收相关概念解读

System.gc()的理解

在默认情况下,通过system.gc()或者Runtime.getRuntime().gc() 的调用,会显式触发Full GC,同时对老年代和新生代进行回收,尝试释放被丢弃对象占用的内存。

然而System.gc() 调用附带一个免责声明,无法保证对垃圾收集器的调用。(不能确保立即生效)

JVM实现者可以通过System.gc() 调用来决定JVM的GC行为。而一般情况下,垃圾回收应该是自动进行的,无须手动触发,否则就太过于麻烦了。在一些特殊情况下,如我们正在编写一个性能基准,我们可以在运行之间调用System.gc()

1. public class SystemGCTest {
2. public static void main(String[] args) {
3. new SystemGCTest();
4.         System.gc();// 提醒JVM的垃圾回收器执行gc,但是不确定是否马上执行gc
5. // 与Runtime.getRuntime().gc();的作用一样
6. 
7.         System.runFinalization();//强制执行使用引用的对象的finalize()方法
8.     }
9. 
10. @Override
11. protected void finalize() throws Throwable {
12. super.finalize();
13.         System.out.println("SystemGCTest 重写了finalize()");
14.     }
15. }

内存溢出与内存泄露

内存溢出(OOM

内存溢出相对于内存泄漏来说,尽管更容易被理解,但是同样的,内存溢出也是引发程序崩溃的罪魁祸首之一。

由于GC一直在发展,所有一般情况下,除非应用程序占用的内存增长速度非常快,造成垃圾回收已经跟不上内存消耗的速度,否则不太容易出现ooM的情况。

大多数情况下,GC会进行各种年龄段的垃圾回收,实在不行了就放大招,来一次独占式的Full GC操作,这时候会回收大量的内存,供应用程序继续使用。

javadoc中对OutOfMemoryError的解释是,没有空闲内存,并且垃圾收集器也无法提供更多内存。

首先说没有空闲内存的情况:说明Java虚拟机的堆内存不够。原因有二:

Java虚拟机的堆内存设置不够。

比如:可能存在内存泄漏问题;也很有可能就是堆的大小不合理,比如我们要处理比较可观的数据量,但是没有显式指定JVM堆大小或者指定数值偏小。我们可以通过参数-Xms-Xmx来调整。

代码中创建了大量大对象,并且长时间不能被垃圾收集器收集(存在被引用)

对于老版本的Oracle JDK,因为永久代的大小是有限的,并且JVM对永久代垃圾回收(如,常量池回收、卸载不再需要的类型)非常不积极,所以当我们不断添加新类型的时候,永久代出现OutOfMemoryError也非常多见,尤其是在运行时存在大量动态类型生成的场合;类似intern字符串缓存占用太多空间,也会导致OOM问题。对应的异常信息,会标记出来和永久代相关:“java.lang.OutOfMemoryError: PermGen space"。

随着元数据区的引入,方法区内存已经不再那么窘迫,所以相应的ooM有所改观,出现OOM,异常信息则变成了:“java.lang.OutofMemoryError:Metaspace"。直接内存不足,也会导致OOM。

这里面隐含着一层意思是,在抛出OutOfMemoryError之前,通常垃圾收集器会被触发,尽其所能去清理出空间。

  • 例如:在引用机制分析中,涉及到JVM会去尝试回收软引用指向的对象等。
  • java.nio.BIts.reserveMemory()方法中,我们能清楚的看到,System.gc()会被调用,以清理空间。

当然,也不是在任何情况下垃圾收集器都会被触发的

  • 比如,我们去分配一个超大对象,类似一个超大数组超过堆的最大值,JVM可以判断出垃圾收集并不能解决这个问题,所以直接抛出OutOfMemoryError。

内存泄漏(Memory Leak)

也称作“存储渗漏”。严格来说,只有对象不会再被程序用到了,但是GC又不能回收他们的情况,才叫内存泄漏。

但实际情况很多时候一些不太好的实践(或疏忽)会导致对象的生命周期变得很长甚至导致00M,也可以叫做宽泛意义上的“内存泄漏”。

尽管内存泄漏并不会立刻引起程序崩溃,但是一旦发生内存泄漏,程序中的可用内存就会被逐步蚕食,直至耗尽所有内存,最终出现OutOfMemory异常,导致程序崩溃。

注意,这里的存储空间并不是指物理内存,而是指虚拟内存大小,这个虚拟内存大小取决于磁盘交换区设定的大小。

举例

单例模式创建的对象

单例的生命周期和应用程序是一样长的,所以单例程序中,如果持有对外部对象的引用的话,那么这个外部对象是不能被回收的,则会导致内存泄漏的产生。

一些提供close的资源未关闭导致内存泄漏

数据库连接(dataSourse.getConnection() ),网络连接(socket)和io连接必须手动close,否则是不能被回收的。

Stop The World

Stop-the-World,简称STW,指的是GC事件发生过程中,会产生应用程序的停顿。停顿产生时整个应用程序线程都会被暂停,没有任何响应,有点像卡死的感觉,这个停顿称为STW。

可达性分析算法中枚举根节点(GC Roots)会导致所有Java执行线程停顿。

  • 分析工作必须在一个能确保一致性的快照中进行
  • 一致性指整个分析期间整个执行系统看起来像被冻结在某个时间点上
  • 如果出现分析过程中对象引用关系还在不断变化,则分析结果的准确性无法保证

被STW中断的应用程序线程会在完成GC之后恢复,频繁中断会让用户感觉像是网速不快造成电影卡带一样,所以我们需要减少STW的发生。

STW事件和采用哪款GC无关,所有的GC都有这个事件。

哪怕是G1也不能完全避免Stop-the-World情况发生,只能说垃圾回收器越来越优秀,回收效率越来越高,尽可能地缩短了暂停时间。

STW是JVM在后台自动发起和自动完成的。在用户不可见的情况下,把用户正常的工作线程全部停掉。

开发中不要用System.gc() 会导致Stop-the-World的发生。

垃圾回收的并行与并发

程序中的并发(Concurrent)

在操作系统中,是指一个时间段中有几个程序都处于已启动运行到运行完毕之间,且这几个程序都是在同一个处理器上运行。

并发不是真正意义上的“同时进行”,只是CPU把一个时间段划分成几个时间片段(时间区间),然后在这几个时间区间之间来回切换,由于CPU处理的速度非常快,只要时间间隔处理得当,即可让用户感觉是多个应用程序同时在进行。

程序中的并发(Parallel)

当系统有一个以上CPU时,当一个CPU执行一个进程时,另一个CPU可以执行另一个进程,两个进程互不抢占CPU资源,可以同时进行,我们称之为并行(Parallel)。

其实决定并行的因素不是CPU的数量,而是CPU的核心数量,比如一个CPU多个核也可以并行。

适合科学计算,后台处理等弱交互场景

并发 vs 并行

  • 并发,指的是多个事情,在同一时间段内同时发生了。
  • 并行,指的是多个事情,在同一时间点上同时发生了。
  • 并发的多个任务之间是互相抢占资源的。
  • 并行的多个任务之间是不互相抢占资源的。
  • 只有在多CPU或者一个CPU多核的情况中,才会发生并行。
  • 否则,看似同时发生的事情,其实都是并发执行的。

并发和并行,在谈论垃圾收集器的上下文语境中,它们可以解释如下:

垃圾回收中的并行(Parallel)

指多条垃圾收集线程并行工作,但此时用户线程仍处于等待状态。如ParNew、Parallel Scavenge、Parallel Old;

垃圾回收中的串行(Serial)

相较于并行的概念,单线程执行。如果内存不够,则程序暂停,启动JM垃圾回收器进行垃圾回收。回收完,再启动程序的线程。

垃圾回收中的并发(Concurrent)

指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),垃圾回收线程在执行时不会停顿用户程序的运行。用户程序在继续运行,而垃圾收集程序线程运行于另一个CPU上;如:CMS、G1

安全点与安全区域

安全点

程序执行时并非在所有地方都能停顿下来开始GC,只有在特定的位置才能停顿下来开始GC,这些位置称为“安全点(Safepoint)”。

Safe Point的选择很重要,如果太少可能导致GC等待的时间太长,如果太频繁可能导致运行时的性能问题。大部分指令的执行时间都非常短暂,通常会根据“是否具有让程序长时间执行的特征”为标准。比如:选择一些执行时间较长的指令作为Safe Point,如方法调用、循环跳转和异常跳转等。

如何在GC发生时,检查所有线程都跑到最近的安全点停顿下来呢?

抢先式中断:(目前没有虚拟机采用了)

首先中断所有线程。如果还有线程不在安全点,就恢复线程,让线程跑到安全点。

主动式中断

设置一个中断标志,各个线程运行到Safe Point的时候主动轮询这个标志,如果中断标志为真,则将自己进行中断挂起。(有轮询的机制)

安全区域(Safe Resion)

Safepoint 机制保证了程序执行时,在不太长的时间内就会遇到可进入GC的Safepoint。但是,程序“不执行”的时候呢?例如线程处于Sleep 状态或Blocked 状态,这时候线程无法响应JVM的中断请求,“走”到安全点去中断挂起,JVM也不太可能等待线程被唤醒。对于这种情况,就需要安全区域(Safe Region)来解决。

安全区域是指在一段代码片段中,对象的引用关系不会发生变化,在这个区域中的任何位置开始Gc都是安全的。我们也可以把Safe Region看做是被扩展了的Safepoint。

实际执行时

当线程运行到Safe Region的代码时,首先标识已经进入了Safe Relgion,如果这段时间内发生GC,JVM会忽略标识为Safe Region状态的线程

当线程即将离开Safe Region时,会检查JVM是否已经完成GC,如果完成了,则继续运行,否则线程必须等待直到收到可以安全离开Safe Region的信号为止;


相关文章
|
4月前
|
Arthas 存储 算法
深入理解JVM,包含字节码文件,内存结构,垃圾回收,类的声明周期,类加载器
JVM全称是Java Virtual Machine-Java虚拟机JVM作用:本质上是一个运行在计算机上的程序,职责是运行Java字节码文件,编译为机器码交由计算机运行类的生命周期概述:类的生命周期描述了一个类加载,使用,卸载的整个过类的生命周期阶段:类的声明周期主要分为五个阶段:加载->连接->初始化->使用->卸载,其中连接中分为三个小阶段验证->准备->解析类加载器的定义:JVM提供类加载器给Java程序去获取类和接口字节码数据类加载器的作用:类加载器接受字节码文件。
420 55
|
9月前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
225 27
|
4月前
|
缓存 算法 Java
JVM深入原理(八)(一):垃圾回收
弱引用-作用:JVM中使用WeakReference对象来实现软引用,一般在ThreadLocal中,当进行垃圾回收时,被弱引用对象引用的对象就直接被回收.软引用-作用:JVM中使用SoftReference对象来实现软引用,一般在缓存中使用,当程序内存不足时,被引用的对象就会被回收.强引用-作用:可达性算法描述的根对象引用普通对象的引用,指的就是强引用,只要有这层关系存在,被引用的对象就会不被垃圾回收。引用计数法-缺点:如果两个对象循环引用,而又没有其他的对象来引用它们,这样就造成垃圾堆积。
133 0
|
4月前
|
算法 Java 对象存储
JVM深入原理(八)(二):垃圾回收
Java垃圾回收过程会通过单独的GC线程来完成,但是不管使用哪一种GC算法,都会有部分阶段需要停止所有的用户线程。这个过程被称之为StopTheWorld简称STW,如果STW时间过长则会影响用户的使用。一般来说,堆内存越大,最大STW就越长,想减少最大STW,就会减少吞吐量,不同的GC算法适用于不同的场景。分代回收算法将整个堆中的区域划分为新生代和老年代。--超过新生代大小的大对象会直接晋升到老年代。
95 0
|
6月前
|
缓存 监控 算法
JVM简介—2.垃圾回收器和内存分配策略
本文介绍了Java垃圾回收机制的多个方面,包括垃圾回收概述、对象存活判断、引用类型介绍、垃圾收集算法、垃圾收集器设计、具体垃圾回收器详情、Stop The World现象、内存分配与回收策略、新生代配置演示、内存泄漏和溢出问题以及JDK提供的相关工具。
JVM简介—2.垃圾回收器和内存分配策略
|
10月前
|
机器学习/深度学习 监控 算法
Java虚拟机(JVM)的垃圾回收机制深度剖析####
本文深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法、性能调优策略及未来趋势。通过实例解析,为开发者提供优化Java应用性能的思路与方法。 ####
223 28
|
9月前
|
算法 网络协议 Java
【JVM】——GC垃圾回收机制(图解通俗易懂)
GC垃圾回收,标识出垃圾(计数机制、可达性分析)内存释放机制(标记清除、复制算法、标记整理、分代回收)
|
9月前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
10月前
|
算法 Java
JVM有哪些垃圾回收算法?
(1)标记清除算法: 标记不需要回收的对象,然后清除没有标记的对象,会造成许多内存碎片。 (2)复制算法: 将内存分为两块,只使用一块,进行垃圾回收时,先将存活的对象复制到另一块区域,然后清空之前的区域。用在新生代 (3)标记整理算法: 与标记清除算法类似,但是在标记之后,将存活对象向一端移动,然后清除边界外的垃圾对象。用在老年代
97 0