jvm之垃圾回收分代收集算法、 增量收集算法、分区算法解读

简介: jvm之垃圾回收分代收集算法、 增量收集算法、分区算法解读

分代收集算法

各种清除算法中,并没有一种算法可以完全替代其他算法,它们都具有自己独特的优势和特点。分代收集算法应运而生。

分代收集算法,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点使用不同的回收算法,以提高垃圾回收的效率。

在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如Http请求中的Session对象、线程、Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长。但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如:String对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至只用一次即可回收。

目前几乎所有的GC都采用分代手机算法执行垃圾回收的。

在HotSpot中,基于分代的概念,GC所使用的内存回收算法必须结合年轻代和老年代各自的特点。

年轻代(Young Gen)

年轻代特点:区域相对老年代较小,对象生命周期短、存活率低,回收频繁。

这种情况复制算法的回收整理,速度是最快的。复制算法的效率只和当前存活对象大小有关,因此很适用于年轻代的回收。而复制算法内存利用率不高的问题,通过hotspot中的两个survivor的设计得到缓解。

老年代(Tenured Gen)

老年代特点:区域较大,对象生命周期长、存活率高,回收不及年轻代频繁。

这种情况存在大量存活率高的对象,复制算法明显变得不合适。一般是由标记-清除或者是标记-清除与标记-整理的混合实现。

  • Mark阶段的开销与存活对象的数量成正比。
  • Sweep阶段的开销与所管理区域的大小成正相关。
  • Compact阶段的开销与存活对象的数据成正比。

以HotSpot中的CMS回收器为例,CMS是基于Mark-Sweep实现的,对于对象的回收效率很高。而对于碎片问题,CMS采用基于Mark-Compact算法的Serial Old回收器作为补偿措施:当内存回收不佳(碎片导致的Concurrent Mode Failure时),将采用Serial Old执行Full GC以达到对老年代内存的整理。

分代的思想被现有的虚拟机广泛使用。几乎所有的垃圾回收器都区分新生代和老年代

增量收集算法

各种清除算法中,在垃圾回收过程中,应用软件将处于一种Stop the World的状态。在Stop the World状态下,应用程序所有的线程都会挂起,暂停一切正常的工作,等待垃圾回收的完成。如果垃圾回收时间过长,应用程序会被挂起很久,将严重影响用户体验或者系统的稳定性。为了解决这个问题,即对实时垃圾收集算法的研究直接导致了增量收集(Incremental Collecting)算法的诞生。

基本思想

如果一次性将所有的垃圾进行处理,需要造成系统长时间的停顿,那么就可以让垃圾收集线程和应用程序线程交替执行。每次,垃圾收集线程只收集一小片区域的内存空间,接着切换到应用程序线程。依次反复,直到垃圾收集完成。

总的来说,增量收集算法的基础仍是传统的标记-清除和复制算法。增量收集算法通过对线程间冲突的妥善处理,允许垃圾收集线程以分阶段的方式完成标记、清理或复制工作

缺点

使用这种方式,由于在垃圾回收过程中,间断性地还执行了应用程序代码,所以能减少系统的停顿时间。但是,因为线程切换和上下文转换的消耗,会使得垃圾回收的总体成本上升,造成系统吞吐量的下降。

分区算法

一般来说,在相同条件下,堆空间越大,一次Gc时所需要的时间就越长,有关GC产生的停顿也越长。为了更好地控制GC产生的停顿时间,将一块大的内存区域分割成多个小块,根据目标的停顿时间,每次合理地回收若干个小区间,而不是整个堆空间,从而减少一次GC所产生的停顿。

分代算法将按照对象的生命周期长短划分成两个部分,分区算法将整个堆空间划分成连续的不同小区间。

每一个小区间都独立使用,独立回收。这种算法的好处是可以控制一次回收多少个小区间。

注意,这些只是基本的算法思路,实际GC实现过程要复杂的多,目前还在发展中的前沿GC都是复合算法,并且并行和并发兼备。


相关文章
|
6月前
|
Arthas 存储 算法
深入理解JVM,包含字节码文件,内存结构,垃圾回收,类的声明周期,类加载器
JVM全称是Java Virtual Machine-Java虚拟机JVM作用:本质上是一个运行在计算机上的程序,职责是运行Java字节码文件,编译为机器码交由计算机运行类的生命周期概述:类的生命周期描述了一个类加载,使用,卸载的整个过类的生命周期阶段:类的声明周期主要分为五个阶段:加载->连接->初始化->使用->卸载,其中连接中分为三个小阶段验证->准备->解析类加载器的定义:JVM提供类加载器给Java程序去获取类和接口字节码数据类加载器的作用:类加载器接受字节码文件。
660 55
|
11月前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
303 27
|
8月前
|
缓存 监控 算法
JVM简介—2.垃圾回收器和内存分配策略
本文介绍了Java垃圾回收机制的多个方面,包括垃圾回收概述、对象存活判断、引用类型介绍、垃圾收集算法、垃圾收集器设计、具体垃圾回收器详情、Stop The World现象、内存分配与回收策略、新生代配置演示、内存泄漏和溢出问题以及JDK提供的相关工具。
JVM简介—2.垃圾回收器和内存分配策略
|
6月前
|
缓存 算法 Java
JVM深入原理(八)(一):垃圾回收
弱引用-作用:JVM中使用WeakReference对象来实现软引用,一般在ThreadLocal中,当进行垃圾回收时,被弱引用对象引用的对象就直接被回收.软引用-作用:JVM中使用SoftReference对象来实现软引用,一般在缓存中使用,当程序内存不足时,被引用的对象就会被回收.强引用-作用:可达性算法描述的根对象引用普通对象的引用,指的就是强引用,只要有这层关系存在,被引用的对象就会不被垃圾回收。引用计数法-缺点:如果两个对象循环引用,而又没有其他的对象来引用它们,这样就造成垃圾堆积。
192 0
|
6月前
|
算法 Java 对象存储
JVM深入原理(八)(二):垃圾回收
Java垃圾回收过程会通过单独的GC线程来完成,但是不管使用哪一种GC算法,都会有部分阶段需要停止所有的用户线程。这个过程被称之为StopTheWorld简称STW,如果STW时间过长则会影响用户的使用。一般来说,堆内存越大,最大STW就越长,想减少最大STW,就会减少吞吐量,不同的GC算法适用于不同的场景。分代回收算法将整个堆中的区域划分为新生代和老年代。--超过新生代大小的大对象会直接晋升到老年代。
166 0
|
8月前
|
监控 算法 Java
JVM—垃圾收集算法和HotSpot算法实现细节
JVM的垃圾收集算法和HotSpot的实现细节复杂但至关重要,通过理解和掌握这些算法,可以为Java应用程序选择合适的垃圾收集器,并进行有效的性能调优。选择适当的垃圾收集策略,结合合理的内存配置和日志分析,能够显著提升应用的运行效率和稳定性。
187 15
|
9月前
|
算法
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。
|
11月前
|
存储 人工智能 自然语言处理
Delta-CoMe:清华联合OpenBMB等高校开源的新型增量压缩算法
Delta-CoMe是由清华大学NLP实验室联合OpenBMB开源社区、北京大学和上海财经大学提出的新型增量压缩算法。该算法通过结合低秩分解和低比特量化技术,显著减少了大型语言模型的存储和内存需求,同时保持了模型性能几乎无损。Delta-CoMe特别适用于处理数学、代码和多模态等复杂任务,并在推理速度上有所提升。
317 6
Delta-CoMe:清华联合OpenBMB等高校开源的新型增量压缩算法
|
机器学习/深度学习 监控 算法
Java虚拟机(JVM)的垃圾回收机制深度剖析####
本文深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法、性能调优策略及未来趋势。通过实例解析,为开发者提供优化Java应用性能的思路与方法。 ####
279 28
|
11月前
|
算法 网络协议 Java
【JVM】——GC垃圾回收机制(图解通俗易懂)
GC垃圾回收,标识出垃圾(计数机制、可达性分析)内存释放机制(标记清除、复制算法、标记整理、分代回收)