jvm之逃逸分析解读

简介: jvm之逃逸分析解读

堆是分配对象的唯一选择么?

在《深入理解Java虚拟机》中关于Java堆内存有这样一段描述:

随着JIT编译期的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么“绝对”了。

在Java虚拟机中,对象是在Java堆中分配内存的,这是一个普遍的常识。但是,有一种特殊情况,那就是如果经过逃逸分析(Escape Analysis)后发现,一个对象并没有逃逸出方法的话,那么就可能被优化成栈上分配。这样就无需在堆上分配内存,也无须进行垃圾回收了。这也是最常见的堆外存储技术。

此外,前面提到的基于OpenJDK深度定制的TaoBaoVM,其中创新的GCIH(GC invisible heap)技术实现off-heap,将生命周期较长的Java对象从heap中移至heap外,并且GC不能管理GCIH内部的Java对象,以此达到降低GC的回收频率和提升GC的回收效率的目的

逃逸分析概述

如何将堆上的对象分配到栈,需要使用逃逸分析手段。

这是一种可以有效减少Java程序中同步负载和内存堆分配压力的跨函数全局数据流分析算法。

通过逃逸分析,Java Hotspot编译器能够分析出一个新的对象的引用的使用范围从而决定是否要将这个对象分配到堆上。

逃逸分析的基本行为就是分析对象动态作用域:

  • 当一个对象在方法中被定义后,对象只在方法内部使用,则认为没有发生逃逸。
  • 当一个对象在方法中被定义后,它被外部方法所引用,则认为发生逃逸。例如作为调用参数传递到其他地方中。

举例1

1. public void my_method() {
2. V v = new V();
3. // use v
4. // ....
5.     v = null;
6. }

没有发生逃逸的对象,则可以分配到栈上,随着方法执行的结束,栈空间就被移除,每个栈里面包含了很多栈帧

1. public static StringBuffer createStringBuffer(String s1, String s2) {
2. StringBuffer sb = new StringBuffer();
3.     sb.append(s1);
4.     sb.append(s2);
5. return sb;
6. }

发生了逃逸,返回sb对象可能会被外部引用

上述方法如果想要StringBuffer sb不发生逃逸,可以这样写

1. public static String createStringBuffer(String s1, String s2) {
2. StringBuffer sb = new StringBuffer();
3.     sb.append(s1);
4.     sb.append(s2);
5. return sb.toString();
6. }

举例2

1. public class EscapeAnalysis {
2. 
3. public EscapeAnalysis obj;
4. 
5. /**
6.      * 方法返回EscapeAnalysis对象,发生逃逸
7.      * @return
8.      */
9. public EscapeAnalysis getInstance() {
10. return obj == null ? new EscapeAnalysis() : obj;
11.     }
12. 
13. /**
14.      * 为成员属性赋值,发生逃逸
15.      */
16. public void setObj() {
17. this.obj = new EscapeAnalysis();
18.     }
19. 
20. /**
21.      * 对象的作用于仅在当前方法中有效,没有发生逃逸
22.      */
23. public void useEscapeAnalysis() {
24. EscapeAnalysis e = new EscapeAnalysis();
25.     }
26. 
27. /**
28.      * 引用成员变量的值,发生逃逸
29.      */
30. public void useEscapeAnalysis2() {
31. EscapeAnalysis e = getInstance();
32.     }
33. }

参数设置

在JDK 6u23 版本之后,HotSpot中默认就已经开启了逃逸分析

如果使用的是较早的版本,开发人员则可以通过:

  • 选项“-XX:+DoEscapeAnalysis"显式开启逃逸分析
  • 通过选项“-XX:+PrintEscapeAnalysis"查看逃逸分析的筛选结果

结论:开发中能使用局部变量的,就不要使用在方法外定义。

逃逸分析:代码优化

使用逃逸分析,编译器可以对代码做如下优化:

一、栈上分配:将堆分配转化为栈分配。如果一个对象在子程序中被分配,要使指向该对象的指针永远不会发生逃逸,对象可能是栈上分配的候选,而不是堆上分配

二、同步省略:如果一个对象被发现只有一个线程被访问到,那么对于这个对象的操作可以不考虑同步。

三、分离对象或标量替换:有的对象可能不需要作为一个连续的内存结构存在也可以被访问到,那么对象的部分(或全部)可以不存储在内存,而是存储在CPU寄存器中。

栈上分配

JIT编译器在编译期间根据逃逸分析的结果,发现如果一个对象并没有逃逸出方法的话,就可能被优化成栈上分配。分配完成后,继续在调用栈内执行,最后线程结束,栈空间被回收,局部变量对象也被回收。这样就无须进行垃圾回收了。

常见的栈上分配的场景

在逃逸分析中,已经说明了。分别是给成员变量赋值、方法返回值、实例引用传递。

同步省略

线程同步的代价是相当高的,同步的后果是降低并发性和性能。

在动态编译同步块的时候,JIT编译器可以借助逃逸分析来判断同步块所使用的锁对象是否只能够被一个线程访问而没有被发布到其他线程。如果没有,那么JIT编译器在编译这个同步块的时候就会取消对这部分代码的同步。这样就能大大提高并发性和性能。这个取消同步的过程就叫同步省略,也叫锁消除。

1. public void f() {
2. Object hellis = new Object();
3. synchronized(hellis) {
4.         System.out.println(hellis);
5.     }
6. }

代码中对hellis这个对象加锁,但是hellis对象的生命周期只在f()方法中,并不会被其他线程所访问到,所以在JIT编译阶段就会被优化掉,优化成:

1. public void f() {
2. Object hellis = new Object();
3.  System.out.println(hellis);
4. }

标量替换

标量(scalar)是指一个无法再分解成更小的数据的数据。Java中的原始数据类型就是标量。

相对的,那些还可以分解的数据叫做聚合量(Aggregate),Java中的对象就是聚合量,因为他可以分解成其他聚合量和标量。

在JIT阶段,如果经过逃逸分析,发现一个对象不会被外界访问的话,那么经过JIT优化,就会把这个对象拆解成若干个其中包含的若干个成员变量来代替。这个过程就是标量替换。

1. public static void main(String args[]) {
2.     alloc();
3. }
4. private static void alloc() {
5. Point point = new Point(1,2);
6.     System.out.println("point.x" + point.x + ";point.y" + point.y);
7. }
8. class Point {
9. private int x;
10. private int y;
11. }

以上代码,经过标量替换后,就会变成

1. private static void alloc() {
2. int x = 1;
3. int y = 2;
4.     System.out.println("point.x = " + x + "; point.y=" + y);
5. }

可以看到,Point这个聚合量经过逃逸分析后,发现他并没有逃逸,就被替换成两个标量了。那么标量替换有什么好处呢?就是可以大大减少堆内存的占用。因为一旦不需要创建对象了,那么就不再需要分配堆内存了。 标量替换为栈上分配提供了很好的基础。

标量替换参数设置

参数-XX:EliminateAllocations:开启了标量替换(默认打开),允许将对象打散分配到栈上。

上述代码在主函数中如果进行了1亿次alloc。调用进行对象创建,由于User对象实例需要占据约16字节的空间,因此累计分配空间达到将近1.5GB。如果堆空间小于这个值,就必然会发生GC。使用如下参数运行上述代码:

-server -Xmx100m -Xms100m -XX:+DoEscapeAnalysis -XX:+PrintGC -XX:+EliminateAllocations

这里设置参数如下:

  • 参数-server:启动Server模式,因为在server模式下,才可以启用逃逸分析。
  • 参数-XX:+DoEscapeAnalysis:启用逃逸分析
  • 参数-Xmx10m:指定了堆空间最大为10MB
  • 参数-XX:+PrintGC:将打印Gc日志
  • 参数-XX:+EliminateAllocations:开启了标量替换(默认打开),允许将对象打散分配在栈上,比如对象拥有id和name两个字段,那么这两个字段将会被视为两个独立的局部变量进行分配

逃逸分析并不成熟

关于逃逸分析的论文在1999年就已经发表了,但直到JDK1.6才有实现,而且这项技术到如今也并不是十分成熟。

其根本原因就是无法保证逃逸分析的性能消耗一定能高于他的消耗。虽然经过逃逸分析可以做标量替换、栈上分配、和锁消除。但是逃逸分析自身也是需要进行一系列复杂的分析的,这其实也是一个相对耗时的过程。

一个极端的例子,就是经过逃逸分析之后,发现没有一个对象是不逃逸的。那这个逃逸分析的过程就白白浪费掉了。

虽然这项技术并不十分成熟,但是它也是即时编译器优化技术中一个十分重要的手段。

注意到有一些观点,认为通过逃逸分析,JVM会在栈上分配那些不会逃逸的对象,这在理论上是可行的,但是取决于JVM设计者的选择。据我所知,Oracle Hotspot JVM中并未这么做,这一点在逃逸分析相关的文档里已经说明,所以可以明确所有的对象实例都是创建在堆上。

目前很多书籍还是基于JDK7以前的版本,JDK已经发生了很大变化,intern字符串的缓存和静态变量曾经都被分配在永久代上,而永久代已经被元数据区取代。但是,intern字符串缓存和静态变量并不是被转移到元数据区,而是直接在堆上分配,所以这一点同样符合前面一点的结论:对象实例都是分配在堆上。


相关文章
|
24天前
|
监控 算法 Java
jvm-48-java 变更导致压测应用性能下降,如何分析定位原因?
【11月更文挑战第17天】当JVM相关变更导致压测应用性能下降时,可通过检查变更内容(如JVM参数、Java版本、代码变更)、收集性能监控数据(使用JVM监控工具、应用性能监控工具、系统资源监控)、分析垃圾回收情况(GC日志分析、内存泄漏检查)、分析线程和锁(线程状态分析、锁竞争分析)及分析代码执行路径(使用代码性能分析工具、代码审查)等步骤来定位和解决问题。
|
2月前
|
小程序 Oracle Java
JVM知识体系学习一:JVM了解基础、java编译后class文件的类结构详解,class分析工具 javap 和 jclasslib 的使用
这篇文章是关于JVM基础知识的介绍,包括JVM的跨平台和跨语言特性、Class文件格式的详细解析,以及如何使用javap和jclasslib工具来分析Class文件。
59 0
JVM知识体系学习一:JVM了解基础、java编译后class文件的类结构详解,class分析工具 javap 和 jclasslib 的使用
|
2月前
|
存储 Java PHP
【JVM】垃圾回收机制(GC)之引用计数和可达性分析
【JVM】垃圾回收机制(GC)之引用计数和可达性分析
85 0
|
5月前
|
Java
jmap 查看jvm内存大小并进行dump文件内存分析
jmap 查看jvm内存大小并进行dump文件内存分析
126 3
|
5月前
|
运维 监控 Java
(十)JVM成神路之线上故障排查、性能监控工具分析及各线上问题排错实战
经过前述九章的JVM知识学习后,咱们对于JVM的整体知识体系已经有了全面的认知。但前面的章节中,更多的是停留在理论上进行阐述,而本章节中则更多的会分析JVM的实战操作。
133 1
|
5月前
|
Arthas 监控 Java
JVM内存问题之使用gperftools分析JNI Memory泄漏的具体步骤是什么
JVM内存问题之使用gperftools分析JNI Memory泄漏的具体步骤是什么
134 2
|
4月前
|
监控 JavaScript Java
JVM源码级别分析G1发生FullGC元凶的是什么
线上系统遭遇频繁Old GC问题,监控显示出现多次“to-space exhausted”日志,这表明垃圾回收过程中因年轻代 Survivor 区或老年代空间不足导致对象晋升失败。通过 JVM 源码分析,此问题源于对象转移至老年代失败时,JVM 无法找到足够的空间存放存活对象。进一步排查发现大对象分配占用了预留空间,加剧了空间不足的情况。使用 JFR 分析工具定位到定期报表序列化导致大量大对象生成,通过改用堆外内存进行序列化输出,最终解决了频繁 Old GC 问题。
147 0
|
5月前
|
监控 Java 开发者
Java面试题:如何使用JVM工具(如jconsole, jstack, jmap)来分析内存使用情况?
Java面试题:如何使用JVM工具(如jconsole, jstack, jmap)来分析内存使用情况?
229 2
|
5月前
|
人工智能 Java
JVM内存问题之当老年代缓慢增加且Full GC无法清除时,应如何使用MAT进行分析
JVM内存问题之当老年代缓慢增加且Full GC无法清除时,应如何使用MAT进行分析
262 0
|
5月前
|
监控 算法 Java
怎么用JDK自带工具进行JVM内存分析
JVM内存分析工具,如`jps`、`jcmd`、`jstat`、`jstack`和`jmap`,是诊断和优化Java应用的关键工具。`jps`列出Java进程,`jcmd`执行诊断任务,如查看JVM参数和线程堆栈,`jstat`监控内存和GC,`jstack`生成线程堆栈信息,而`jmap`则用于生成堆转储文件。这些工具帮助排查内存泄漏、优化内存配置、性能调优和异常分析。例如,`jmap -dump:file=heapdump.hprof <PID>`生成堆转储文件,之后可以用Eclipse Memory Analyzer (MAT)等工具分析。