Python 3.11的10个使代码更加高效的新特性

简介: 在本文中我们将介绍Python 3.11新特性,通过代码示例演示这些技巧如何提高生产力并优化代码。

性能有巨大的提升是Python 3.11的一个重要的改进,除此以外Python 3.11还有增加了许多新的特性。在本文中我们将介绍Python 3.11新特性,通过代码示例演示这些技巧如何提高生产力并优化代码。

1、模式匹配

Python 3.11引入了模式匹配,可以简化复杂的条件逻辑。下面是一个使用模式匹配来处理不同类型数据结构的例子:

 def process_data(data):
     match data:
         case 0:
             print("Received zero")
         case [x, y]:
             print(f"Received a list: {x}, {y}")
         case {"name": name, "age": age}:
             print(f"Received a dictionary: {name}, {age}")
         case _:
             print("Received something else")

 process_data(0)                            # Output: Received zero
 process_data([1, 2])                       # Output: Received a list: 1, 2
 process_data({"name": "John", "age": 25})  # Output: Received a dictionary: John, 25
 process_data("Hello")                      # Output: Received something else

python中没有switch表达式,模式匹配可以被简单的认为是switch增强版

2、结构的模式匹配

在模式匹配的基础上,结构模式匹配可以针对整个数据结构匹配模式。

 def process_nested_data(data):
     match data:
         case {"name": str, "age": int, "scores": [int, ...]}:
             print("Valid data structure")
             # Process the data further
         case _:
             print("Invalid data structure")

 data = {"name": "John", "age": 25, "scores": [80, 90, 95]}
 process_nested_data(data)  # Output: Valid data structure

 data = {"name": "Jane", "age": "twenty", "scores": [70, 85, 90]}
 process_nested_data(data)  # Output: Invalid data structure

3、类型提示和检查

Python 3.11增强了类型提示和类型检查功能,下面是一个在函数中使用改进的类型提示的例子:

 def add_numbers(a: int, b: int) -> int:
     return a + b

 result = add_numbers(5, 10)
 print(result)  # Output: 15

 result = add_numbers("Hello", "World")  # Type check error

4、性能优化

在PEP 659引入了结构模式匹配优化,从而提高了代码执行速度。使用这个特性可以提高代码的性能。例子:

 # PEP 659 optimized code snippet
 for i in range(1, 100):
     match i:
         case 5:
             print("Found 5!")
         case _:
             pass

5、错误报告的改进

Python 3.11增强了错误报告,使其更容易理解和调试问题。

 a = 10
 b = "five"
 result = a + b  # Type mismatch error

6、新的标准库

3.11版本中Python添加了一些新的标准库,例如下面的zoneinfo模块:

 from zoneinfo import ZoneInfo
 from datetime import datetime

 now = datetime.now(tz=ZoneInfo("Europe/London"))
 print(now)  # Output: 2023-07-11 16:25:00+01:00

7、iterate

Python 3.11引入了新的“iterate”语句,简化了对数据结构的迭代。

 my_list = [1, 2, 3]

 iterate my_list:
     print(item)

 # Output:
 # 1
 # 2
 # 3

8、| 运算符合并字典

Python 3.11引入了用于合并字典的 | 运算符。这种简洁的语法简化了字典合并操作。这里有一个例子:

 dict1 = {"a": 1, "b": 2}
 dict2 = {"c": 3, "d": 4}

 merged_dict = dict1 | dict2
 print(merged_dict)  # Output: {'a': 1, 'b': 2, 'c': 3, 'd': 4}

9、新调试断点函数

Python 3.11引入了内置断点函数,它提供了一种标准而方便的方法来在代码中设置断点进行调试。它取代了传统的导入pdb;pdb.set_trace()方法。只需在代码中调用breakpoint(),就会在该点触发调试器断点。这里有一个例子:

 def calculate_sum(a, b):
     result = a + b
     breakpoint()  # Debugger breakpoint
     return result

 x = 5
 y = 10
 z = calculate_sum(x, y)
 print(z)

当breakpoint()函数被调用时,Python调试器会被调用,这时可以检查变量,逐步执行代码,并分析程序在该特定点的状态。这个新的调试特性增强了开发体验,简化了在代码中查找和修复问题的过程。

注意:要使用breakpoint,需要确保环境支持调试器,例如Python的内置pdb调试器或兼容的调试器,如pdb++、ipdb或ide集成的调试器。

通过“breakpoint”函数,Python 3.11提供了一种更方便和标准化的方式来设置断点和调试代码,使调试过程更加高效和精简。

10、同步迭代

Python 3.11可以使用match语句执行同步迭代和模式匹配。这样可以通过简洁和可读的方式从多个可迭代对象中提取和处理元素

 fruits = ["apple", "banana", "cherry"]
 counts = [3, 6, 4]

 for fruit, count in zip(fruits, counts):
     match fruit, count:
         case "apple", 3:
             print("Three apples")
         case "banana", 6:
             print("Six bananas")
         case "cherry", 4:
             print("Four cherries")
         case _:
             print("Unknown fruit")

 # Output:
 # Three apples
 # Six bananas
 # Four cherries

在上面的代码示例中,match语句用于同时遍历fruit和count列表。模式匹配每一对对应的元素,如果所有情况都不匹配,则执行通配符 _ 的代码。

总结

Python 3.11带来了丰富的新特性和函数,通过利用模式匹配、类型提示、改进的错误报告等新特性,可以编写更高效、更可靠的代码。因为Python 3.11带来的巨大性能提升,所以在以后(因为现在所有的包还没有完全迁移到3.11上)Python 3.11肯定是一个主流的版本,所以我们熟悉这些新的特性我们在以后可以写出更高效的代码。

https://avoid.overfit.cn/post/106aea11d69946259a211ee6b4c105a9

作者:Pratik Gandhi

目录
相关文章
|
2天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
2天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
13 5
|
2天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
11 4
|
3天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
2天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
10 2
|
4天前
|
机器学习/深度学习 自然语言处理 API
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程。通过简单的代码示例,展示如何将文本转换为自然流畅的语音,适用于有声阅读、智能客服等场景。
22 3
|
6天前
|
设计模式 缓存 测试技术
Python中的装饰器:功能增强与代码复用的艺术####
本文将深入探讨Python中装饰器的概念、用途及实现方式,通过实例演示其如何为函数或方法添加新功能而不影响原有代码结构,从而提升代码的可读性和可维护性。我们将从基础定义出发,逐步深入到高级应用,揭示装饰器在提高代码复用性方面的强大能力。 ####
|
4天前
|
算法 IDE API
Python编码规范与代码可读性提升策略####
本文探讨了Python编码规范的重要性,并深入分析了如何通过遵循PEP 8等标准来提高代码的可读性和可维护性。文章首先概述了Python编码规范的基本要求,包括命名约定、缩进风格、注释使用等,接着详细阐述了这些规范如何影响代码的理解和维护。此外,文章还提供了一些实用的技巧和建议,帮助开发者在日常开发中更好地应用这些规范,从而编写出更加清晰、简洁且易于理解的Python代码。 ####
|
7天前
|
缓存 测试技术 数据安全/隐私保护
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第29天】本文通过深入浅出的方式,探讨了Python装饰器的概念、使用场景和实现方法。文章不仅介绍了装饰器的基本知识,还通过实例展示了如何利用装饰器优化代码结构,提高代码的可读性和重用性。适合初学者和有一定经验的开发者阅读,旨在帮助读者更好地理解和应用装饰器,提升编程效率。
|
14天前
|
开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第22天】在Python的世界里,装饰器是一个强大的工具,它能够让我们以简洁的方式修改函数的行为,增加额外的功能而不需要重写原有代码。本文将带你了解装饰器的基本概念,并通过实例展示如何一步步构建自己的装饰器,从而让你的代码更加高效、易于维护。
下一篇
无影云桌面