深度剖析数据在内存中的存储

简介: 深度剖析数据在内存中的存储

一、数据类型的介绍



基本的内置类型--C语言本身具有的

char 字符型
short 短整型
int 整型
long 长整型
long  long 更长的整型
float 单精度浮点型
double 双精度浮点型


#include <limits.h>
//这个头文件限定了数据类型的最大值和最小值
int main()
{
    INT_MAX:        //右键,转到定义
    return 0;
}

167682a5a3574a15830d475b4efba2f9.png


1.1类型的基本分类


整形:

char

       unsigned char

       signed char

short

 unsigned short [int]

       signed short [int]

int

       unsigned int

       signed int

long

       unsigned long [int]

       signed long [int]


说明:字符存储的时候,存储的是ASCII码值,是整型,所以归类的时候放在整型家族。

对于整整型来说,类型有有符号和无符号的区分


char  是signed char 还是unsigned char 不确定

short==signed short

int==signed int


有符号和无符号表示的数值范围

85d5a245ce3042e8ac125c4abcec9e2e.png4a4de814bddb42f7aa0e9b07e23711c7.png


浮点型

       float

       double


构造类型:

数组类型

结构体类型 struct

枚举类型 enum

联合类型 union


指针类型

int *pi;

char *pc;

float* pf;

void* pv;


空类型

void 表示空类型(无类型)

通常应用于函数的返回类型、函数的参数、指针类型。


二、整型在内存中的存储



我们知道一个变量的创建是要在内存中开辟空间的,空间的大小是根据不同的类型而决定的。

例如:int a = 10;就是在内存中开辟了4个字节的空间,那么它是如何存储的呢?我们要了解下面的概念:


2.1原码、反码、补码


整型数据的二进制表示形式有3种:原码、反码、补码

三种表示方法均有符号位数值位两部分,最高位是符号位,符号位是用0表示“正”,用1表示“负”,数值位正数的原、反、补码都相同,负数的三种表示方法各不相同。


原码

直接将数值按照正负数的形式翻译成二进制就可以得到原码。

反码

将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码

反码+1就得到补码。


例如:c6d75d8ddc154f8a81b11c7582fcf493.png


对于整形来说:数据存放内存中存放的是补码


2.2大小端介绍


什么大端小端:


大端存储模式,是指数据的保存在内存的地址中,而数据的保存在内存的地址

小端存储模式,是指数据的保存在内存的地址中,而数据的保存在内存的地址

字节序 ---  是以字节为单位,讨论存储顺序的

6a4b7b547f614acf8d7c791ddae1894d.png04568071bf044870a758c4e8cc0b68fb.png


如图可以看到低位存放在了低地址处,高位存放在高地址处,所以是小端存储


例:设计一个小程序来判断当前机器的字节序


#include <stdio.h>
int Check_sys()
{
  int a = 1;
  return *((char*)&a);
}
int main()
{
  int ret = Check_sys();
  if (ret == 1)
  {
    printf("小端\n");
  }
  else
  {
    printf("大端\n");
  }
  return 0;
}


我们得到第一个字节的数,就可以判断出是大端存储还是小端存储。我们通过&a得到a的地址,但a的地址是int*类型,解引用会访问四个字节,所以我们要强制类型转换(char*)&a


d680d1b858d54fe49ea21560d025aefc.png


三、浮点型在内存中的存储



我们先通过一个例子观察浮点型存储和整型存储

#include <stdio.h>
int main()
{
  int n = 9;
  float* pFloat = (float*)&n;
  printf("n的值为:%d\n", n);
  printf("*pFloat的值为:%f\n", *pFloat);
  *pFloat = 9.0;
  printf("num的值为:%d\n", n);
  printf("*pFloat的值为:%f\n", *pFloat);
  return 0;
}


56bebdfb37b34af3a4fc8ebfdfd4af67.png


n*float在内存中是同一个数,浮点数和整数的编译结果有很大的差距,这说明浮点型的存储规则与整型的存储规则不同。 接下来就带大家学习浮点型的存储规则。


3.1浮点数存储的规则


根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:

  • V=(-1)^S * M * 2^E
  • (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数
  • M表示有效数字,大于等于1,小于2
  • 2^E表示指数位


例如:

十进制的5.5,写成二进制是101.1,相当于(-1)^0*1.011*2^2


5c75a7749b994b0daf2146a2200e1d1c.png


IEEE 754规定:

对于32位的浮点数,最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M

a490bb7af6c946be93124a452b0dda3e.png


对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M

28355f7907b34422bb2130b82ba76739.png

IEEE 754对有效数字M和指数E也有一些规定


前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxx的形式,其中xxxxx表示小数部分。 IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只需要存储这个数的小数位,这样可以节省1位有效数字,扩大存储数据的范围。等到读取时,把一加上就可以了。


指数E为一个无符号整数(unsigned int)如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。


例如:

82064a002f34495db1402d33b29fa6f6.png

指数E从内存中取出分为三种情况:


E不全为0或不全为1

浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。


E全为0

浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于 0的很小的数字。


E全为1

如果有效数字M全为0,表示±无穷大(正负取决于符号位s)


讲到这里我们就可以解释第一道例题了

711f640b09a740fc8499ebea405baf58.png


本次的内容到这里就结束啦。希望大家阅读完可以有所收获,同时也感谢各位读者的支持。文章有问题可以在评论区留言,博主一定认真认真修改,以后写出更好的文章。  

相关文章
|
2月前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
73 11
|
3月前
|
监控 算法 应用服务中间件
“四两拨千斤” —— 1.2MB 数据如何吃掉 10GB 内存
一个特殊请求引发服务器内存用量暴涨进而导致进程 OOM 的惨案。
|
3月前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
148 1
|
3月前
|
存储
共用体在内存中如何存储数据
共用体(Union)在内存中为所有成员分配同一段内存空间,大小等于最大成员所需的空间。这意味着所有成员共享同一块内存,但同一时间只能存储其中一个成员的数据,无法同时保存多个成员的值。
|
3月前
|
监控 Java easyexcel
面试官:POI大量数据读取内存溢出?如何解决?
【10月更文挑战第14天】 在处理大量数据时,使用Apache POI库读取Excel文件可能会导致内存溢出的问题。这是因为POI在读取Excel文件时,会将整个文档加载到内存中,如果文件过大,就会消耗大量内存。以下是一些解决这一问题的策略:
362 1
|
2月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
358 1
|
30天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
2月前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
|
2月前
|
Java
JVM运行时数据区(内存结构)
1)虚拟机栈:每次调用方法都会在虚拟机栈中产生一个栈帧,每个栈帧中都有方法的参数、局部变量、方法出口等信息,方法执行完毕后释放栈帧 (2)本地方法栈:为native修饰的本地方法提供的空间,在HotSpot中与虚拟机合二为一 (3)程序计数器:保存指令执行的地址,方便线程切回后能继续执行代码
25 3
|
2月前
|
存储 缓存 监控
Elasticsearch集群JVM调优堆外内存
Elasticsearch集群JVM调优堆外内存
55 1

热门文章

最新文章