STM32配合W5500网卡连接MQTT服务器

简介: W5500是一种基于TCP/IP协议的网络通讯芯片,可以提供网络连接功能,相当于是一种嵌入式以太网控制器,具有低功耗、高速传输、易于集成等特点。

【1】W5500网卡

W5500是一种基于TCP/IP协议的网络通讯芯片,可以提供网络连接功能,相当于是一种嵌入式以太网控制器,具有低功耗、高速传输、易于集成等特点。W5500芯片能够支持TCP、UDP、IPv4、ARP、ICMP、IGMP等协议,使得它变得非常适合用于嵌入式设备与互联网之间的通信需求,例如智能家居、工业控制、远程监控等场景。W5500网卡还有一个特点是它支持硬件协议堆栈,这意味着它可以非常快地执行协议栈中的操作,从而大大提高了数据传输的效率。同时,W5500还具有较低的功耗,因此非常适合嵌入式设备这种资源受限的场景。

W5500芯片通过SPI总线与MCU进行通信,MCU需要实现SPI总线协议来控制W5500进行数据交互。

【2】SPI协议

SPI(Serial Peripheral Interface)协议是一种串行外设接口协议,是一种全双工、同步的接口技术,通常用于连接微控制器和外设,例如传感器、存储器、显示器等。SPI协议传输效率高,使用简单,开销较小,因此被广泛应用于嵌入式系统中。

SPI协议使用主从模式,主设备可以控制多个从设备,从设备不能主动向主设备发送数据或信息。SPI协议具有以下几个重要的信号线:

  1. SCLK:时钟线,由主设备提供,用于同步主从设备之间的数据传输。
  2. MOSI(Master Out Slave In):主输出从输入线,由主设备提供,用于向从设备发送数据。
  3. MISO(Master In Slave Out):主输入从输出线,由从设备提供,用于向主设备发送数据。
  4. SS(Slave Select):从设备选择信号线,由主设备提供。当主设备需要与某个从设备通信时,将该线电平拉低,以选择需要通信的从设备。

SPI协议的数据传输是基于数据字节的传输,主设备每次通过MOSI线发送一个字节,从设备通过MISO线接受该字节,并回传一个字节。数据的传输顺序可以根据时钟线(SCLK)的极性和相位配置为四种不同的模式。SPI协议支持的模式受闪存、RAM、I/O和模拟/数字转换器等外设和类型的限制。

【3】W5500建立TCP协议通信

以下是STM32通过W5500建立TCP通信,并访问TCP服务器,完成数据收发的示例代码。

代码中使用了STM32 HAL库,W5500的IP地址和端口号需要根据实际情况进行设置。

#include "main.h"
#include "stdio.h"
#include "stm32f1xx_hal.h"
#include "wizchip_conf.h"
#include "socket.h"
#include "dhcp.h"

/* Private variables */
SPI_HandleTypeDef hspi1;

/* Private function prototypes */
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
void W5500_Init(void);
uint8_t socket;
uint8_t buf[1024];

int main(void)
{
   
  /* MCU Configuration */
  HAL_Init();
  SystemClock_Config();
  MX_GPIO_Init();
  MX_SPI1_Init();

  /* W5500 Initialization */
  W5500_Init();

  /* Connect to TCP Server */
  uint8_t server_ip[4] = {
   192, 168, 1, 100};
  uint16_t server_port = 5000;
  uint8_t connected = 0;

  while (!connected)
  {
   
    if (getSn_SR(socket) == SOCK_CLOSED)
    {
   
      socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
      if (socket == 0xFF)
      {
   
        /* Error: Failed to create socket */
      }
      else
      {
   
        /* Configure socket */
        uint8_t dest_ip[4] = {
   192, 168, 1, 200};
        uint16_t dest_port = 5000;
        uint8_t buf[4];
        IINCHIP_WRITE(Sn_DIPR(socket), dest_ip);
        IINCHIP_WRITE(Sn_DPORT(socket), dest_port);
        IINCHIP_SOCKET_CONTROL(socket, Sn_CR_OPEN);
        HAL_Delay(10);

        /* Try to connect to server */
        IINCHIP_SOCKET_CONTROL(socket, Sn_CR_CONNECT);
        HAL_Delay(1000);
        if (getSn_SR(socket) == SOCK_ESTABLISHED)
        {
   
          connected = 1;
        }
        else
        {
   
          /* Connection failed */
          IINCHIP_SOCKET_CONTROL(socket, Sn_CR_CLOSE);
          HAL_Delay(10);
        }
      }
    }
  }

  /* Send Data to Server */
  uint8_t tx_data[4] = {
   0x01, 0x02, 0x03, 0x04};
  write(socket, tx_data, sizeof(tx_data));

  /* Receive Data from Server */
  int rx_len = 0;
  while (1)
  {
   
    rx_len = getSn_RX_RSR(socket);
    if (rx_len > 0)
    {
   
      read(socket, buf, rx_len);
      /* Data received from server, do something */
    }
= SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
HAL_SPI_Init(&hspi1);
}
/* GPIO Initialization */
static void MX_GPIO_Init(void) 
{
   
GPIO_InitTypeDef GPIO_InitStruct = {
   0};
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin : PA4 */
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* System Clock Configuration */
void SystemClock_Config(void) 
{
   
RCC_OscInitTypeDef RCC_OscInitStruct = {
   0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {
   0};
/** Initializes the RCC Oscillators according to the specified parameters
in the RCC_OscInitTypeDef structure. */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) 
{
   
    Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) 
{
   
    Error_Handler();
}
}

【4】封装MQTT协议报文

下面使用MQTT client library for Contiki来连接MQTT服务器。这个库适用于不同的平台,包括STM32。在使用前,需要根据需求进行一些配置,例如: 指定MQTT服务器的地址和端口号,配置MQTT客户端ID和主题等。

#include "contiki.h"
#include "contiki-net.h"
#include "mqtt.h"

#include "stm32f1xx_hal.h"
#include "wizchip_conf.h"
#include "w5500.h"

/* MQTT Configuration */
#define SERVER_IP_ADDR "192.168.1.100"
#define SERVER_PORT 1883
#define MQTT_CLIENT_ID "mqtt_stm32"
#define MQTT_TOPIC "example_topic"

/* Network Configuration */
static wiz_NetInfo gWIZNETINFO = {
    .mac = {
   0x01, 0x02, 0x03, 0x04, 0x05, 0x06},
                                   .ip = {
   192, 168, 1, 200},
                                   .sn = {
   255, 255, 255, 0},
                                   .gw = {
   192, 168, 1, 1},
                                   .dns = {
   8, 8, 8, 8},
                                   .dhcp = NETINFO_STATIC };

/* W5500 Buffer */
static uint8_t buf[2048];

/* Prototypes */
static void MX_SPI1_Init(void);
static void MX_GPIO_Init(void);
void SystemClock_Config(void);
void Error_Handler(void);
void W5500_Select(void);
void W5500_UnSelect(void);
uint8_t W5500_WriteByte(uint8_t b);
uint8_t W5500_ReadByte(void);
void MQTT_Callback(struct mqtt_connection *m, void *userdata, mqtt_event_t event, mqtt_data_t *data);

/* MQTT Connection */
static struct mqtt_connection mqtt_conn;
static struct mqtt_message *msg_ptr = NULL;
static uint8_t mqtt_connected = 0;

PROCESS(mqtt_process, "MQTT Process");

AUTOSTART_PROCESSES(&mqtt_process);

/* MQTT Process */
PROCESS_THREAD(mqtt_process, ev, data)
{
   
  PROCESS_BEGIN();

  /* Initialize W5500 */
  reg_wizchip_cs_cbfunc(W5500_Select, W5500_UnSelect);
  reg_wizchip_spi_cbfunc(W5500_ReadByte, W5500_WriteByte);
  wizchip_init(buf, buf);

  /* Configure Network */
  ctlnetwork(CN_SET_NETINFO, (void*)&(gWIZNETINFO));

  /* DHCP Initialization */
  uint8_t /* Enable DHCP */ dhcp_client_start();

/* Wait for DHCP to finish */
while (gWIZNETINFO.dhcp == NETINFO_DHCP) 
{
   
    HAL_Delay(1000);
    // wait for DHCP to finish }
    /* Print IP Address */
    printf("IP address: %d.%d.%d.%d\n", gWIZNETINFO.ip[0], gWIZNETINFO.ip[1], gWIZNETINFO.ip[2], gWIZNETINFO.ip[3]);
    /* Configure MQTT Connection */
    memset(&mqtt_conn, 0, sizeof(mqtt_conn));
    mqtt_conn.state = MQTT_INIT;
    mqtt_conn.host = SERVER_IP_ADDR;
    mqtt_conn.port = SERVER_PORT;
    mqtt_conn.client_id = MQTT_CLIENT_ID;
    mqtt_conn.user_data = NULL;
    mqtt_conn.user_name = NULL;
    mqtt_conn.password = NULL;
    mqtt_conn.protocol_version = MQTT_VERSION_3_1_1;
    mqtt_conn.keep_alive = 60;
    /* Connect to MQTT Server */
    mqtt_connect(&mqtt_conn);
    /* Wait for MQTT Connection to Finish */
    while (!mqtt_connected) 
    {
   
        PROCESS_PAUSE();
    }
    /* Publish Message to MQTT Server */
    static char msg[100] = "Hello from STM32 using MQTT protocol!";
    msg_ptr = mqtt_msg_publish_init(msg, strlen(msg), MQTT_TOPIC, MQTT_QOS_LEVEL_0, MQTT_RETAIN_OFF);
    mqtt_publish(&mqtt_conn, msg_ptr);
    /* Wait for Message to be Sent */
    while (mqtt_conn.out_buffer_sent == 0) 
    {
   
        PROCESS_PAUSE();
    }
    /* Subscribe to MQTT Topic */
    mqtt_subscribe(&mqtt_conn, MQTT_TOPIC, MQTT_QOS_LEVEL_0);
    /* Loop Forever */
    while (1) 
    {
   
        PROCESS_PAUSE();
    }
    PROCESS_END();
}


/* SPI Initialization / static void MX_SPI1_Init(void) { / SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
HAL_SPI_Init(&hspi1);
}
/* GPIO Initialization */
static void MX_GPIO_Init(void) 
{
   
GPIO_InitTypeDef GPIO_InitStruct = {
   0};
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin : PA4 */
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* System Clock Configuration */
void SystemClock_Config(void) 
{
   
RCC_OscInitTypeDef RCC_OscInitStruct = {
   0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {
   0};
/** Initializes the RCC Oscillators according to the specified parameters
in the RCC_OscInitTypeDef structure. */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) 
{
   
    Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) 
{
   
    Error_Handler();
}

}

/* Error Handler */
void Error_Handler(void) 
{
   
while (1) 
{
   
    // error } }
    /* W5500 Select */
    void W5500_Select(void) 
    {
   
        HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET);
    }
    /* W5500 Unselect */
    void W5500_UnSelect(void) 
    {
   
        HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET);
    }
    /* W5500 Write Byte */
    uint8_t W5500_Writebyte(uint8_t b) 
    {
   
        uint8_t res;
        HAL_SPI_TransmitReceive(&hspi1, &b, &res, 1, HAL_MAX_DELAY);
        return res;
    }

/* W5500 Read
byte */ uint8_t W5500_Readbyte(void) 
{
   
    uint8_t b = 0xff;
    HAL_SPI_TransmitReceive(&hspi1, &b, &b, 1, HAL_MAX_DELAY);
    return b;
}
/* MQTT Callback */
void MQTT_Callback(struct mqtt_connection *m, void *userdata, mqtt_event_t event, mqtt_data_t *data) 
{
   
    switch (event) 
    {
   
        case MQTT_EVENT_CONNECTED: printf("MQTT connected\n");
        mqtt_connected = 1;
        break;
        case MQTT_EVENT_DISCONNECTED: printf("MQTT disconnected\n");
        mqtt_connected = 0;
        break;
        case MQTT_EVENT_PUBLISHED: printf("MQTT message published\n");
        break;
        case MQTT_EVENT_SUBACK: printf("MQTT subscribed to topic\n");
        break;
        case MQTT_EVENT_UNSUBACK: printf("MQTT unsubscribed from topic\n");
        break;
        case MQTT_EVENT_DATA: printf("MQTT received message\n");
        printf("Topic: %.*s\n", data->topic_name_size, data->topic_name);
        printf("Message: %.*s\n", data->data_size, (char *)data->data);
        break;
        default: break;
    }
}
相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
2月前
|
传感器 数据采集 移动开发
基于STM32的智能手环wifi连接手机APP(下)
基于STM32的智能手环wifi连接手机APP(下)
116 0
|
2月前
|
IDE 网络安全 开发工具
IDE之vscode:连接远程服务器代码(亲测OK),与pycharm链接服务器做对比(亲自使用过了),打开文件夹后切换文件夹。
本文介绍了如何使用VS Code通过Remote-SSH插件连接远程服务器进行代码开发,并与PyCharm进行了对比。作者认为VS Code在连接和配置多个服务器时更为简单,推荐使用VS Code。文章详细说明了VS Code的安装、远程插件安装、SSH配置文件编写、服务器连接以及如何在连接后切换文件夹。此外,还提供了使用密钥进行免密登录的方法和解决权限问题的步骤。
981 0
IDE之vscode:连接远程服务器代码(亲测OK),与pycharm链接服务器做对比(亲自使用过了),打开文件夹后切换文件夹。
|
2月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
470 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
|
2月前
|
Apache 数据中心 Windows
将网站迁移到阿里云Windows系统云服务器,访问该站点提示连接被拒绝,如何处理?
将网站迁移到阿里云Windows系统云服务器,访问该站点提示连接被拒绝,如何处理?
|
2月前
|
传感器 存储 编解码
基于STM32的智能手环wifi连接手机APP(上)
基于STM32的智能手环wifi连接手机APP(上)
80 0
|
2月前
|
弹性计算 安全 Windows
通过远程桌面连接Windows服务器提示“由于协议错误,会话将被中断,请重新连接到远程计算机”错误怎么办?
通过远程桌面连接Windows服务器提示“由于协议错误,会话将被中断,请重新连接到远程计算机”错误怎么办?
|
2天前
|
人工智能 JSON Linux
利用阿里云GPU加速服务器实现pdf转换为markdown格式
随着AI模型的发展,GPU需求日益增长,尤其是个人学习和研究。直接购置硬件成本高且更新快,建议选择阿里云等提供的GPU加速型服务器。
利用阿里云GPU加速服务器实现pdf转换为markdown格式
|
1天前
|
开发框架 缓存 .NET
阿里云轻量应用服务器、经济型e、通用算力型u1实例怎么选?区别及选择参考
在阿里云目前的活动中,价格比较优惠的云服务器有轻量应用服务器2核2G3M带宽68元1年,经济型e实例2核2G3M带宽99元1年,通用算力型u1实例2核4G5M带宽199元1年,这几个云服务器是用户关注度最高的。有的新手用户由于是初次使用阿里云服务器,对于轻量应用服务器、经济型e、通用算力型u1实例的相关性能并不是很清楚,本文为大家做个简单的介绍和对比,以供参考。
|
9天前
|
弹性计算 运维 安全
阿里云轻量应用服务器与ECS的区别及选择指南
轻量应用服务器和云服务器ECS(Elastic Compute Service)是两款颇受欢迎的产品。本文将对这两者进行详细的对比,帮助用户更好地理解它们之间的区别,并根据自身需求做出明智的选择。
|
10天前
|
SQL 弹性计算 安全
阿里云上云优选与飞天加速计划活动区别及购买云服务器后续必做功课参考
对于很多用户来说,购买云服务器通常都是通过阿里云当下的各种活动来购买,这就有必要了解这些活动的区别,同时由于活动内的云服务器购买之后还需要单独购买并挂载数据盘,还需要设置远程密码以及安全组等操作之后才能正常使用云服务器。本文就为大家介绍一下目前比较热门的上云优选与飞天加速计划两个活动的区别,以及通过活动来购买云服务器之后的一些必做功课,确保云服务器可以正常使用,以供参考。