Flink的DataSource三部曲之二:内置connector

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 来体验Flink内置connector提供的source能力

欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos

  • 本文是《Flink的DataSource三部曲》系列的第二篇,上一篇《Flink的DataSource三部曲之一:直接API》学习了StreamExecutionEnvironment的API创建DataSource,今天要练习的是Flink内置的connector,即下图的红框位置,这些connector可以通过StreamExecutionEnvironment的addSource方法使用:
    在这里插入图片描述
  • 今天的实战选择Kafka作为数据源来操作,先尝试接收和处理String型的消息,再接收JSON类型的消息,将JSON反序列化成bean实例;

源码下载

名称 链接 备注
项目主页 https://github.com/zq2599/blog_demos 该项目在GitHub上的主页
git仓库地址(https) https://github.com/zq2599/blog_demos.git 该项目源码的仓库地址,https协议
git仓库地址(ssh) git@github.com:zq2599/blog_demos.git 该项目源码的仓库地址,ssh协议
  • 这个git项目中有多个文件夹,本章的应用在flinkdatasourcedemo文件夹下,如下图红框所示:
    在这里插入图片描述

环境和版本

  • 本次实战的环境和版本如下:
  • JDK:1.8.0_211
  • Flink:1.9.2
  • Maven:3.6.0
  • 操作系统:macOS Catalina 10.15.3 (MacBook Pro 13-inch, 2018)
  • IDEA:2018.3.5 (Ultimate Edition)
  • Kafka:2.4.0
  • Zookeeper:3.5.5

  • 请确保上述内容都已经准备就绪,才能继续后面的实战;

    Flink与Kafka版本匹配

  • Flink官方对匹配Kafka版本做了详细说明,地址是:https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/kafka.html
  • 要重点关注的是官方提到的通用版(universal Kafka connector ),这是从Flink1.7开始推出的,对于Kafka1.0.0或者更高版本都可以使用:
    在这里插入图片描述
  • 下图红框中是我的工程中要依赖的库,蓝框中是连接Kafka用到的类,读者您可以根据自己的Kafka版本在表格中找到适合的库和类:
    在这里插入图片描述

    实战字符串消息处理

  • 在kafka上创建名为test001的topic,参考命令:
./kafka-topics.sh \
--create \
--zookeeper 192.168.50.43:21- \
--replication-factor 1 \
--partitions 2 \
--topic test001
  • 继续使用上一章创建的flinkdatasourcedemo工程,打开pom.xml文件增加以下依赖:
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-kafka_2.11</artifactId>
  <version>1.10.0</version>
</dependency>
  • 新增类Kafka240String.java,作用是连接broker,对收到的字符串消息做WordCount操作:
package com.bolingcavalry.connector;

import com.bolingcavalry.Splitter;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import java.util.Properties;
import static com.sun.tools.doclint.Entity.para;

public class Kafka240String {
   
   
    public static void main(String[] args) throws Exception {
   
   
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //设置并行度
        env.setParallelism(2);

        Properties properties = new Properties();
        //broker地址
        properties.setProperty("bootstrap.servers", "192.168.50.43:9092");
        //zookeeper地址
        properties.setProperty("zookeeper.connect", "192.168.50.43:2181");
        //消费者的groupId
        properties.setProperty("group.id", "flink-connector");
        //实例化Consumer类
        FlinkKafkaConsumer<String> flinkKafkaConsumer = new FlinkKafkaConsumer<>(
                "test001",
                new SimpleStringSchema(),
                properties
        );
        //指定从最新位置开始消费,相当于放弃历史消息
        flinkKafkaConsumer.setStartFromLatest();

        //通过addSource方法得到DataSource
        DataStream<String> dataStream = env.addSource(flinkKafkaConsumer);

        //从kafka取得字符串消息后,分割成单词,统计数量,窗口是5秒
        dataStream
                .flatMap(new Splitter())
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .sum(1)
                .print();

        env.execute("Connector DataSource demo : kafka");
    }
}
  • 确保kafka的topic已经创建,将Kafka240运行起来,可见消费消息并进行单词统计的功能是正常的:
    在这里插入图片描述
  • 接收kafka字符串消息的实战已经完成,接下来试试JSON格式的消息;

    实战JSON消息处理

  • 接下来要接受的JSON格式消息,可以被反序列化成bean实例,会用到JSON库,我选择的是gson;
  • 在pom.xml增加gson依赖:
<dependency>
  <groupId>com.google.code.gson</groupId>
  <artifactId>gson</artifactId>
  <version>2.8.5</version>
</dependency>
  • 增加类Student.java,这是个普通的Bean,只有id和name两个字段:
package com.bolingcavalry;

public class Student {
   
   

    private int id;

    private String name;

    public int getId() {
   
   
        return id;
    }

    public void setId(int id) {
   
   
        this.id = id;
    }

    public String getName() {
   
   
        return name;
    }

    public void setName(String name) {
   
   
        this.name = name;
    }
}
  • 增加类StudentSchema.java,该类是DeserializationSchema接口的实现,将JSON反序列化成Student实例时用到:
ackage com.bolingcavalry.connector;

import com.bolingcavalry.Student;
import com.google.gson.Gson;
import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.serialization.SerializationSchema;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import java.io.IOException;

public class StudentSchema implements DeserializationSchema<Student>, SerializationSchema<Student> {
   
   

    private static final Gson gson = new Gson();

    /**
     * 反序列化,将byte数组转成Student实例
     * @param bytes
     * @return
     * @throws IOException
     */
    @Override
    public Student deserialize(byte[] bytes) throws IOException {
   
   
        return gson.fromJson(new String(bytes), Student.class);
    }

    @Override
    public boolean isEndOfStream(Student student) {
   
   
        return false;
    }

    /**
     * 序列化,将Student实例转成byte数组
     * @param student
     * @return
     */
    @Override
    public byte[] serialize(Student student) {
   
   
        return new byte[0];
    }

    @Override
    public TypeInformation<Student> getProducedType() {
   
   
        return TypeInformation.of(Student.class);
    }
}
  • 新增类Kafka240Bean.java,作用是连接broker,对收到的JSON消息转成Student实例,统计每个名字出现的数量,窗口依旧是5秒:
package com.bolingcavalry.connector;

import com.bolingcavalry.Splitter;
import com.bolingcavalry.Student;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import java.util.Properties;

public class Kafka240Bean {
   
   
    public static void main(String[] args) throws Exception {
   
   
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //设置并行度
        env.setParallelism(2);

        Properties properties = new Properties();
        //broker地址
        properties.setProperty("bootstrap.servers", "192.168.50.43:9092");
        //zookeeper地址
        properties.setProperty("zookeeper.connect", "192.168.50.43:2181");
        //消费者的groupId
        properties.setProperty("group.id", "flink-connector");
        //实例化Consumer类
        FlinkKafkaConsumer<Student> flinkKafkaConsumer = new FlinkKafkaConsumer<>(
                "test001",
                new StudentSchema(),
                properties
        );
        //指定从最新位置开始消费,相当于放弃历史消息
        flinkKafkaConsumer.setStartFromLatest();

        //通过addSource方法得到DataSource
        DataStream<Student> dataStream = env.addSource(flinkKafkaConsumer);

        //从kafka取得的JSON被反序列化成Student实例,统计每个name的数量,窗口是5秒
        dataStream.map(new MapFunction<Student, Tuple2<String, Integer>>() {
   
   
            @Override
            public Tuple2<String, Integer> map(Student student) throws Exception {
   
   
                return new Tuple2<>(student.getName(), 1);
            }
        })
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .sum(1)
                .print();

        env.execute("Connector DataSource demo : kafka bean");
    }
}
  • 在测试的时候,要向kafka发送JSON格式字符串,flink这边就会给统计出每个name的数量:
    在这里插入图片描述
  • 至此,内置connector的实战就完成了,接下来的章节,我们将要一起实战自定义DataSource;

    欢迎关注阿里云开发者社区博客:程序员欣宸

    学习路上,你不孤单,欣宸原创一路相伴...

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
2月前
|
消息中间件 资源调度 大数据
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
50 0
|
4月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之如何配置Connector来保持与MySOL一致
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之如何使用Kafka Connector将数据写入到Kafka
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
消息中间件 Kafka 数据处理
实时计算 Flink版操作报错合集之使用kafka connector时,报错:java.lang.ClassNotFoundException,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
6月前
|
NoSQL 关系型数据库 Java
实时计算 Flink版产品使用问题之如何使用Flink MongoDB Connector连接MongoDB
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
关系型数据库 数据库 流计算
实时计算 Flink版操作报错合集之在使用Flink CDC TiDB Connector时,无法获取到事件,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
414 0
|
6月前
|
SQL 存储 API
Flink(十五)【Flink SQL Connector、savepoint、CateLog、Table API】(5)
Flink(十五)【Flink SQL Connector、savepoint、CateLog、Table API】
|
6月前
|
SQL 消息中间件 Java
Flink(十五)【Flink SQL Connector、savepoint、CateLog、Table API】(4)
Flink(十五)【Flink SQL Connector、savepoint、CateLog、Table API】
|
6月前
|
SQL Java API
Flink(十五)【Flink SQL Connector、savepoint、CateLog、Table API】(3)
Flink(十五)【Flink SQL Connector、savepoint、CateLog、Table API】