【奶奶看了都会】Meta开源大模型LLama2部署使用教程,附模型对话效果

简介: 就在7月19日,MetaAI开源了LLama2大模型,Meta 首席科学家、图灵奖获得者 Yann LeCun在推特上表示Meta 此举可能将改变大模型行业的竞争格局。一夜之间,大模型格局再次发生巨变。

1.写在前面

就在7月19日,MetaAI开源了LLama2大模型,Meta 首席科学家、图灵奖获得者 Yann LeCun在推特上表示Meta 此举可能将改变大模型行业的竞争格局。一夜之间,大模型格局再次发生巨变。

1.png

推文上列了Llama2的网站和论文,小卷给大家贴一下,感兴趣的友友可以自己看看

站点:https://ai.meta.com/llama/

论文:https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/

Github页:https://github.com/facebookresearch/llama

2.LLama2是什么

Llama官网的说明是Llama2下一代开源大语言模型,可免费用于学术研究或商业用途。

目前模型有7B、13B、70B三种规格,预训练阶段使用了2万亿Token,SFT阶段使用了超过10w数据,人类偏好数据超过100w。

2.png

另外大家最关心的Llama2和ChatGPT模型的效果对比,在论文里也有提到,

对比GPT-4,Llama2评估结果更优,绿色部分表示Llama2优于GPT4的比例

3.png

虽然中文的占比只有0.13%,但后续会有一大推中文扩充词表预训练&领域数据微调的模型被国人放出。这不才开源几天而已,GIthub上就已经有基于Llama2的中文大模型了。。。

3.部署使用

关于LLama2的技术细节就不再多说了,大家可以自行查阅。接下来就教大家怎么自己玩一玩LLama2对话大模型。

大部分人都是没有本地GPU算力的,我们选择在云服务器上部署使用。我这里用的是揽睿星舟平台的GPU服务器(便宜好用,3090只要1.9/小时,且已在平台上预设了模型文件,无需再次下载)

新用户注册还送2小时的3090算力,记得注册时码写4104

3.1新建空间

登录:https://www.lanrui-ai.com/console/workspace

创建一个工作空间,运行环境镜像挂载公有镜像:pytorch: official-torch2.0-cu1117。选择预训练模型:llama-2-7b 和 llama-2-7b-chat。然后创建实例

4.png

3.2下载代码

实例创建完成后,以jupyterLab方式登录服务器,新建一个Terminal,然后进入到data目录下

cd data

下载代码

执行下面的命令从GIthub上拉取llama的代码

sudo git clone https://github.com/facebookresearch/llama.git

下载完成后,会多一个llama目录

5.png

3.3运行脚本

进入llama目录

cd llama

安装依赖

sudo pip install -e .

测试llama-2-7b模型的文本补全能力

命令行执行:

torchrun --nproc_per_node 1 example_text_completion.py \
     --ckpt_dir ../../imported_models/llama-2-7b/Llama-2-7b \
     --tokenizer_path ../../imported_models/llama-2-7b/Llama-2-7b/tokenizer.model \
     --max_seq_len 128 --max_batch_size 4

文本补齐效果示例:

6.png

上面的例子是在python脚本里写了一段话,让模型补全后面的内容。

测试llama-2-7b模型的对话能力

修改llama目录权限为777,再修改example_chat_completion.py文件中的ckpt_dirtokenizer_path路径为你的llama-2-7b-chat模型的绝对路径

// 1.修改目录权限为可写入
chmod 777 llama

//2.修改example_chat_completion.py文件里的参数
ckpt_dir: str = "/home/user/imported_models/llama-2-7b-chat/Llama-2-7b-chat/",
tokenizer_path: str = "/home/user/imported_models/llama-2-7b-chat/Llama-2-7b-chat/tokenizer.model"

//3.运行对话脚本
torchrun --nproc_per_node 1 example_chat_completion.py

7.png

这里我修改提示语让它用中文回答,执行对话脚本后,对话效果如下:

torchrun --nproc_per_node 1 example_chat_completion.py

7_1.png

说明:目前官方还没有提供UI界面或是API脚本代码给咱使用,还没法进行对话交互,如果有懂python的友友,可以自行加个UI界面,欢迎大家留言讨论。

4.下载更多模型

llama代码里有download.sh脚本可以下载其他模型,但是下载需要的URL需要自行获取。下载步骤如下:

1.Meta AI网站获取下载URL

MetaAI下载模型页地址:https://ai.meta.com/llama/#download-the-model

8.png

点击Download后,要求填入一些信息和邮箱,提交后会给你的邮箱发一个下载URL,注意这个是你自己的下载链接哦~

下图是小卷邮箱里收到的模型下载链接

9.png

2.下载模型

服务器上命令行执行

sudo bash download.sh

接着按照提示粘贴下载URL和选择要下载的模型

10.png

总结

对于国内大模型使用来说,随着开源可商用的模型越来越多,国内大模型肯定会再次迎来发展机遇。

文章原创不易,欢迎多多转发,点赞,关注

也欢迎关注我卷福同学,技术问题都可在公众号内交流

相关文章
|
5月前
|
分布式计算 测试技术 Spark
科大讯飞开源星火化学大模型、文生音效模型
近期,科大讯飞在魔搭社区(ModelScope)和Gitcode上开源两款模型:讯飞星火化学大模型Spark Chemistry-X1-13B、讯飞文生音频模型AudioFly,助力前沿化学技术研究,以及声音生成技术和应用的探索。
473 2
|
4月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
432 120
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
842 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
5月前
|
自然语言处理 机器人 图形学
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型
腾讯混元图像3.0,真的来了——开源,免费开放使用。 正式介绍一下:混元图像3.0(HunyuanImage 3.0),是首个工业级原生多模态生图模型,参数规模80B,也是目前测评效果最好、参数量最大的开源生图模型,效果可对…
1131 2
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型
|
4月前
|
缓存 物联网 PyTorch
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
1115 2
|
5月前
|
机器学习/深度学习 算法 数据可视化
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
753 2
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
|
4月前
|
监控 安全 数据安全/隐私保护
55_大模型部署:从云端到边缘的全场景实践
随着大型语言模型(LLM)技术的飞速发展,从实验室走向产业化应用已成为必然趋势。2025年,大模型部署不再局限于传统的云端集中式架构,而是向云端-边缘协同的分布式部署模式演进。这种转变不仅解决了纯云端部署在延迟、隐私和成本方面的痛点,还为大模型在各行业的广泛应用开辟了新的可能性。本文将深入剖析大模型部署的核心技术、架构设计、工程实践及最新进展,为企业和开发者提供从云端到边缘的全场景部署指南。
|
5月前
|
人工智能 云栖大会
2025云栖大会大模型应用开发与部署|门票申领
2025云栖大会大模型应用开发与部署门票申领
292 9