【MATLAB第57期】基于MATLAB的双隐含层BP神经网络回归预测模型(无工具箱版本及工具箱版本对比)

简介: 因工具箱版本和无工具箱版本训练方法不同,以及有工具箱版本内置默认参数较为丰富 ,如连续验证最大失败数量、训练集再划分样本等等参数 ,且trainlm函数功能强大,用代码编写比较复杂。故有工具版计算结果较好,收敛速度较快,使用方便,而无工具箱版本则更能直观的观察数据变化以及能够更直观体现BP神经网络计算原理。

【MATLAB第57期】基于MATLAB的双隐含层BP神经网络回归预测模型(无工具箱版本及工具箱版本对比)

一、无工具箱版本

1.数据设置

数据为案例数据 。103行样本,7输入1输出数据。

2.参数设置

训练函数 梯度下降
HiddenUnit1Num=10;%隐层1结点数
HiddenUnit2Num=10;%隐层2节点数
MaxEpochs=20000;%最大训练次数
TF1 = 'logsig';TF2 = 'logsig'; TF3 = 'purelin';%各层传输函数,TF3为输出层传输函数
lr=0.003;%学习率
E0=0.05;%目标误差

3.代码展示

%--------------两个隐层的BP算法-------------%
clear all;
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集
temp = randperm(103);
save temp temp
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);


SamNum=size(p_train,2);%样本数
TestSamNum=size(p_test,2);%测试样本
HiddenUnit1Num=10;%隐层1结点数
HiddenUnit2Num=10;%隐层2节点数
InDim=size(p_train,1);%样本输入维数
OutDim=size(t_train,1);%样本输出维数
%根据目标函数获得样本输入输出

MaxEpochs=20000;%最大训练次数
lr=0.003;%学习率
E0=0.05;%目标误差
%产生扩展向量,及扩展样本输入%
W1Ex=[W1 B1];
W2Ex=[W2 B2];
W3Ex=[W3 B3];
SamInEx=[p_train' ones(SamNum,1)]';
for i=1:MaxEpochs
    %正向传播时第一隐层,第二隐层,及网络输出值%
    u=W1Ex*SamInEx;
    Hidden1Out=1./(1+exp(-u));
    Hidden1OutEx=[Hidden1Out' ones(SamNum,1)]';    %停止学习判断条件
    Error=t_train-NetworkOut;%是一个1*M的向量
    SSE=sum(Error.^2);%所有样本产生的误差之和
    if SSE<E0,break,end
    %计算反向传播误差
    Delta3=Error;%是一个横向量,包含样本的误差
    Dw3Ex=Delta3*Hidden2OutEx';
    for n=1:SamNum %对每一个样本分别计算
        Delta2=(W3'*Delta3(n)).*Hidden2Out(:,n).*(1-Hidden2Out(:,n));
        Delta2Store(:,n)=Delta2;
        Dw2Ex=Dw2Ex+Delta2*Hidden1OutEx(:,n)'; 
    end
    %更新权值

end
%% 测试集预测
v=size(p_test);
TestSamInEx=[p_test' ones(v(2),1)]';
u=W1Ex*TestSamInEx;
Hidden1Out=1./(1+exp(-u));
Hidden1OutEx=[Hidden1Out' ones(v(2),1)]';
u=W2Ex*Hidden1OutEx;
Hidden2Out=1./(1+exp(-u));
Hidden2OutEx=[Hidden2Out' ones(v(2),1)]';
TestNetworkOut=W3Ex*Hidden2OutEx;   %网络输出值
T_sim2 = mapminmax('reverse', TestNetworkOut, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

4.效果展示

2023-07-22_133720.png
2023-07-22_133736.png

训练集数据的R2为:0.9022
测试集数据的R2为:0.87266
训练集数据的MAE为:1.8189
测试集数据的MAE为:2.1658
训练集数据的MBE为:-0.00088469
测试集数据的MBE为:0.3059

二、有工具箱版本

1.数据设置

数据与无工具版本相同,数据顺序也相同。

2.参数设置

训练函数 trainlm
NodeNum1 = 10; % 隐层第一层节点数
NodeNum2=10; % 隐层第二层节点数
net.trainParam.epochs=20000;%训练次数设置
net.trainParam.goal=0.05;%训练目标设置
net.trainParam.lr=0.003;%学习率设置,应设置为较少值,太大虽然会在开始加快收敛速度,但临近最佳点时,会产生动荡,而致使无法收敛
TF1 = 'logsig';TF2 = 'logsig'; TF3 = 'purelin';%各层传输函数,TF3为输出层传输函数
%如果训练结果不理想,可以尝试更改传输函数,以下这些是各类传输函数

3.代码展示

%--------------两个隐层的BP算法-------------%

% BP 神经网络用于预测
%网络为7输入,1输出
% 103组数据,其中80组为正常训练数据,23组为测试数据
clear all;
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集
temp = randperm(103);
load temp
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%---------------------------------------------------
%数据归一化处理
%mapminmax函数默认将数据归一化到[0,1],调用形式如下
%[y,ps] =%mapminmax(x,ymin,ymax)
%x需归化的数据输入
%ymin,ymax为需归化到的范围,不填默认为归化到[-1,1]
%y归一化后的样本数据
%ps处理设置,ps主要在结果反归一化中需要调用,或者使用同样的settings归一化另外一组数据
%---------------------------------------------------
%---------------------------------------------------
% 设置网络参数
%--------------------------------------------------- 
NodeNum1 = 10; % 隐层第一层节点数
NodeNum2=10; % 隐层第二层节点数
TypeNum = 1; % 输出维数

TF1 = 'logsig';TF2 = 'logsig'; TF3 = 'purelin';%各层传输函数,TF3为输出层传输函数
%如果训练结果不理想,可以尝试更改传输函数,以下这些是各类传输函数
%TF1 = 'tansig';TF2 = 'logsig';
%TF1 = 'logsig';TF2 = 'purelin';
%TF1 = 'tansig';TF2 = 'tansig';
%TF1 = 'logsig';TF2 = 'logsig';
%TF1 = 'purelin';TF2 = 'purelin'; 

%注意创建BP网络函数newff()的参数调用

%---------------------------------------------------
% 设置训练参数
%--------------------------------------------------- 
net.trainParam.epochs=20000;%训练次数设置
net.trainParam.goal=0.05;%训练目标设置
net.trainParam.lr=0.003;%学习率设置,应设置为较少值,太大虽然会在开始加快收敛速度,但临近最佳点时,会产生动荡,而致使无法收敛
%---------------------------------------------------
% 指定训练函数
%---------------------------------------------------
% net.trainFcn = 'traingd'; % 梯度下降算法
% net.trainFcn = 'traingdm'; % 动量梯度下降算法
%
% net.trainFcn = 'traingda'; % 变学习率梯度下降算法
% net.trainFcn = 'traingdx'; % 变学习率动量梯度下降算法
%
% (大型网络的首选算法)
% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最小
%
% (共轭梯度算法)
% net.trainFcn = 'traincgf'; % Fletcher-Reeves修正算法
% net.trainFcn = 'traincgp'; % Polak-Ribiere修正算法,内存需求比Fletcher-Reeves修正算法略大
% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求比Polak-Ribiere修正算法略大
%
% (大型网络的首选算法)
%net.trainFcn = 'trainscg'; % Scaled Conjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量比上面三种算法都小很多
% net.trainFcn = 'trainbfg'; % Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均比共轭梯度算法大,但收敛比较快
% net.trainFcn = 'trainoss'; % One Step Secant Algorithm,计算量和内存需求均比BFGS算法小,比共轭梯度算法略大
%
% (中型网络的首选算法)
%net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法,内存需求最大,收敛速度最快
% net.trainFcn = 'trainbr'; % 贝叶斯正则化算法
%
% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm'

%%  训练网络
net = train(net, p_train, t_train);

%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

4.效果展示

2023-07-22_134720.png
2023-07-22_134740.png

训练集数据的R2为:1
测试集数据的R2为:0.94759
训练集数据的MAE为:3.6159e-07
测试集数据的MAE为:1.0637
训练集数据的MBE为:-2.0744e-07
测试集数据的MBE为:-0.43051

三、总结

因工具箱版本和无工具箱版本训练方法不同,以及有工具箱版本内置默认参数较为丰富 ,如连续验证最大失败数量、训练集再划分样本等等参数 ,且trainlm函数功能强大,用代码编写比较复杂 。故有工具版计算结果较好,收敛速度较快,使用方便,而无工具箱版本则更能直观的观察数据变化以及能够更直观体现BP神经网络计算原理。

四、代码获取

私信回复“57期”即可获取下载链接。

相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
3天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
13 2
|
6天前
|
网络虚拟化
生成树协议(STP)及其演进版本RSTP和MSTP,旨在解决网络中的环路问题,提高网络的可靠性和稳定性
生成树协议(STP)及其演进版本RSTP和MSTP,旨在解决网络中的环路问题,提高网络的可靠性和稳定性。本文介绍了这三种协议的原理、特点及区别,并提供了思科和华为设备的命令示例,帮助读者更好地理解和应用这些协议。
20 4
|
4天前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
13 1
|
1月前
|
网络协议 前端开发 Java
网络协议与IO模型
网络协议与IO模型
网络协议与IO模型
|
1月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
68 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
15天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
缓存 Java Linux
硬核图解网络IO模型!
硬核图解网络IO模型!
|
29天前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
39 0

热门文章

最新文章