DAPP链上代币发行合约去中心化项目系统开发实现技术案例及源码详情

简介:  区块头和区块体数据也会被当作输入数据做一次Hash运算,其运算结果会被存储在下一个区块的区块头中,这样任何区块内容的修改都会反映到区块的Hash值上,而区块的Hash值又是下一个区块的输入数据,它又会被当作新区块的数据参与一次新区块的Hash运算,随着时间的推移和交易量的增加,所有的区块会通过保存前一个区块的Hash运算结果的方式组成一条链。

 区块头和区块体数据也会被当作输入数据做一次Hash运算,其运算结果会被存储在下一个区块的区块头中,这样任何区块内容的修改都会反映到区块的Hash值上,而区块的Hash值又是下一个区块的输入数据,它又会被当作新区块的数据参与一次新区块的Hash运算,随着时间的推移和交易量的增加,所有的区块会通过保存前一个区块的Hash运算结果的方式组成一条链。

  智能合约在区块链上的可执行代码是一种类似汇编语言的指令集,这些指令集通过EVM的解释和执行,对区块链的状态进行读写,实现合约规定的业务逻辑。因此通过Solidity这种高级编程语言,加上Solidity编译器,可以将高级语言编译成汇编指令集码,再将其部署到区块链上执行。

当函数调用者满足条件后,我们进入真正的 NFT 转移程序。首先清除待转移 NFT 的原有授权,代码如下:

assembly {
if approvedAddress {
sstore(approvedAddressSlot, 0)
}
}

直接将 _tokenApprovals 中 NFT 对应的值清空。

接下来,我们进入了最复杂的 NFT 转移阶段,该阶段的逻辑大致如下:

修正转移双方的 balance 参数

--_packedAddressData[from];
++_packedAddressData[to];
1
2
更新 tokenId 对应的 _packedOwnerships 数据:

_packedOwnerships[tokenId] = _packOwnershipData(
to,
_BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
);

由于转移过程必须进行初始化,所以此处将转移的 NFT 的 nextInitialized 设置为 True

考虑下一个 NFT 是否被初始化,
如转移下图中 tokenId = 3 的 NFT:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wKsxnwNP-1675684640935)(https://files.catbox.moe/20sjdu.svg)]
该 NFT 转移后,由于破坏了拥有者 0x2 的连续性,所以我们需要重写 tokenId = 4 的对应数据,代码如下:

if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
if (_packedOwnerships[nextTokenId] == 0) {
if (nextTokenId != _currentIndex) {
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}

此处使用了 _packedOwnerships[nextTokenId] == 0 排除了 tokenId = 4 转移的特殊情况。该 NFT 位于连续 NFT 的末尾,转移此 NFT 不会破环连续性

至此,我们完成了 NFT 的转移的核心流程。接下来就是已经介绍过的 Transfer 释放流程:

uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
assembly {
// Emit the Transfer event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
from, // from.
toMasked, // to.
tokenId // tokenId.
)
}
if (toMasked == 0) _revert(TransferToZeroAddress.selector);

相关文章
|
设计模式 算法 前端开发
【软件设计师备考 专题 】设计评审:确保质量和效率
【软件设计师备考 专题 】设计评审:确保质量和效率
315 0
|
消息中间件 Kubernetes NoSQL
Linux时间校准(ntpdate及NTP客户端代码校准示例)
Linux时间校准(ntpdate及NTP客户端代码校准示例)
|
6月前
|
缓存 监控 安全
如何制作网站?网站制作步骤:
‌制作网站的核心步骤:明确核心内容、注册网址域名与租用服务器、页面风格确定、网站制作、测试优化及维护管理。
378 72
|
7月前
|
存储 SQL 监控
【亲测有用】数据中台系统管理能力演示
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
机器学习/深度学习 人工智能 自然语言处理
深度揭秘:深度学习框架下的神经网络架构进化
从感知机到深度学习的革命,神经网络经历了从简单到复杂的演变。反向传播使多层网络实用化,深度信念网络(DBN)和卷积神经网络(CNN)的兴起,尤其是AlexNet在ImageNet竞赛中的胜利,开启了深度学习黄金时代。ResNet的残差学习解决了深度梯度消失问题。循环神经网络(RNN)、LSTM和GRU改进了序列处理,Transformer模型(如BERT和GPT)引领了自然语言处理的变革。超大规模模型如GPT-3和通义千问展示惊人能力,影响医疗、自动驾驶等多个领域。未来,平衡模型复杂度、计算成本与应用需求将是关键。
680 2
|
10月前
|
监控 网络协议 网络安全
恶意代码分析入门--开始动态地分析恶意程序(chapter3L_Lab03-01)
实验3-1:通过动态分析技术分析Lab03-01.exe中的恶意代码,探究其导入函数、字符串列表、感染特征及网络特征。实验环境为Windows XP SP3,使用Process Explorer、Strings、Process Monitor、PEiD、Wireshark等工具。分析过程中发现恶意代码创建了互斥体、修改了注册表以实现自启动,并尝试访问外部恶意链接。
235 3
恶意代码分析入门--开始动态地分析恶意程序(chapter3L_Lab03-01)
|
机器学习/深度学习
斯坦福大学博士在GitHub发布的漫画机器学习小抄,竟斩获129k标星
斯坦福大学数据科学博士Chris Albon在GitHub上发布了一份超火的机器学习漫画小抄,发布仅仅一天就斩获GitHub榜首标星暴涨120k,小编有幸获得了一份并把它翻译成中文版本,今天给大家分享出来!
|
存储 数据可视化 Python
使用python moviepy提取视频中的音频,同时对音频数据进行数据可视化分析
使用python moviepy提取视频中的音频,同时对音频数据进行数据可视化分析
516 0
|
机器学习/深度学习 存储 算法
【强化学习】常用算法之一 “Q-learning”
Q-learning算法是一种基于强化学习的无模型学习方法,通过学习到目标系统的Q值函数来解决智能体在给定环境下的最优决策策略问题。Q-learning算法是基于后验策略方法,即学习出目标系统的价值函数Q之后,通过使用某种策略来最大化该价值函数,称之为后验策略。Q-learning算法是偏差-方差权衡的算法,在偏差较高的情况下可以在基于模型的强化学习中找到一个接近最优策略的解决方案。同时它也具有较高的收敛速度和广泛的适用性,因为其只需要存储一个值函数,不需要存储模型。
1125 0
【强化学习】常用算法之一 “Q-learning”
|
弹性计算 大数据 测试技术
阿里云服务器多少钱一年?2024年阿里云服务器价格表新鲜出炉
阿里云服务器分为轻量应用服务器和云服务器ECS,轻量适合个人开发者使用,搭建轻量级的网站、测试环境使用,专业级如大数据、科学计算、高并发网站等需要使用云服务器ECS,以下是分享阿里云服务器租用费用,也可以移步到官方服务器页面:云服务器ECS经济型e实例2核2G、3M固定带宽99元一年、ECS u1实例2核4G、5M固定带宽、80G ESSD Entry盘优惠价格199元一年,轻量应用服务器2核2G3M带宽轻量服务器一年61元、2核4G4M带宽轻量服务器一年165元12个月、2核4G服务器30元3个月