解析pdf图片格式的表格到excel表格

简介: 解析pdf图片格式的表格到excel表格,原理是把pdf转换成图片,根据直方图定位表格单元格线条位置,按照单元格切分原始pdf,按顺序ocr单元格内容,最终拼接成完整excel
# -*- coding: utf-8 -*-"""Created on Wed Aug  3 10:06:27 2022@author: 01394546"""importcv2importnumpyasnpimportmatplotlib.pyplotaspltimportpandasaspdfromPILimportImageimportcv2importnumpyasnpimportfitz##如果安装失败,可以直接安装pip install PyMuPDF后,fitz就可以正常使用了importpytesseractimportmatplotlib.pyplotaspltimportos# 处理文件frompdf2imageimportconvert_from_path# pdf转图片importpytesseract# 识别图片文字importcsv# 处理csv文件deftess_ocr(pdf_path):
# 创建一个和pdf同名的文件夹images=convert_from_path(pdf_path, fmt='png', output_folder='./out/',
userpw='site',poppler_path=r'E:\poppler-0.68.0_x86\poppler-0.68.0\bin')  # 转成图片# pdf_document = '2022年南山宝安避雷名单-截止2022年7月(OCR).pdf'doc=fitz.open(pdf_path)
result= {}
for (i,img) inenumerate(images):
# plt.xticks([]), plt.yticks([])  # 隐藏x和y轴# plt.imshow(np.asarray(img))# plt.savefig('./out/{0}_{1}页.png'.format(pdf_path, i+1))# plt.show()print('正在处理{0}的第{1}/{2}页。。。'.format(pdf_path,i,len(images)))
print(np.asarray(img).shape)
b, g, r=cv2.split(np.asarray(img))  # 分别提取B、G、R通道img_new1=cv2.merge([r, g, b])  # 重新组合为R、G、Bxs,ys=cut_pdf2_pic(img_new1)
page1=doc.load_page(i)  # pdf文件第一页rect=page1.rect# print(rect)# print('ys----',ys)iflen(ys)==7:
cols=['行政区','区域','地址','事件描述','黑房东联系方式','事件时间']
else:
cols= [ '区域', '地址', '事件描述', '黑房东联系方式', '事件时间']
forjinrange(len(xs) -1):
foriinrange(len(ys) -1):
# 在分割时,第一个参数为y坐标,第二个参数为x坐标# print('xs[j]--',xs[j])# print('xs[j + 1]--',xs[j + 1])# print('ys[i]--', ys[i])# print('ys[i + 1]--', ys[i + 1])# print('(ys[i]/ys[-1])',(ys[i]/ys[-1]))# print('(ys[i]/ys[-1]) * rect.width', (ys[i]/ys[-1]) * rect.width)# print('(ys[i+1]/ys[-1])', (ys[i+1]/ys[-1]))# print('(ys[i+1]/ys[-1])* rect.width', (ys[i+1]/ys[-1])* rect.width)clip=fitz.Rect(((ys[i]-30)/ys[-1]) *rect.width, ((xs[j]-50)/xs[-1]) *rect.height,
                                 ((ys[i+1]+30)/ys[-1])*rect.width, ((xs[j+1]+50)/xs[-1])*rect.height)
a_text=page1.get_text(clip=clip)
# print(a_text)result[cols[i]]=result.get(cols[i],[])
result[cols[i]].append(a_text.replace('\n',''))
# for i in result.keys():#     print(len(result[i]))print(result)
data=pd.DataFrame(result)
data.index.name='编号'data['标注名称'] =data['地址']
if'行政区'inlist(data.columns):
data['地名地址'] ='深圳市'+data['行政区']+data['区域'] +data['地址']
else:
data['地名地址'] ='深圳市'+data['区域'] +data['地址']
data['经度'] =Nonedata['纬度'] =Nonedata['被举报原因'] =data['事件描述']
data['举报日期[日期]'] =data['事件时间']
data[['标注名称', '地名地址', '经度', '纬度', '被举报原因','黑房东联系方式', '举报日期[日期]']].to_csv(os.path.join('./黑房东数据/OUT/', pdf_path.split('/')[-1]+'.csv'))
defcut_pdf2_pic(image):
# image = cv2.imread('./20220809193309.png', 1)# print(image)# 灰度图片gray=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 二值化binary=cv2.adaptiveThreshold(~gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 35, -5)
# ret,binary = cv2.threshold(~gray, 127, 255, cv2.THRESH_BINARY)# cv2.imshow("二值化图片:", binary) #展示图片# cv2.waitKey(0)rows, cols=binary.shapescale=20# 识别横线kernel=cv2.getStructuringElement(cv2.MORPH_RECT, (cols//scale, 1))
eroded=cv2.erode(binary, kernel, iterations=1)
# cv2.imshow("Eroded Image",eroded)dilatedcol=cv2.dilate(eroded, kernel, iterations=1)
# cv2.imshow("表格横线展示:",dilatedcol)# cv2.waitKey(0)# 识别竖线scale=20kernel=cv2.getStructuringElement(cv2.MORPH_RECT, (1, rows//scale))
eroded=cv2.erode(binary, kernel, iterations=1)
dilatedrow=cv2.dilate(eroded, kernel, iterations=1)
# cv2.imshow("表格竖线展示:",dilatedrow)# cv2.waitKey(0)# 标识表格merge=cv2.add(dilatedcol, dilatedrow)
# cv2.imshow("表格整体展示:", merge)# cv2.waitKey(0)print('merge.shape:', merge.shape)#页面的长和宽,对应矩阵的行和列x=merge.sum(axis=0)  #像素向上叠加,长度等于列y=merge.sum(axis=1)  #像素向右边叠加,长度等于行# print(x,len(x))# print(y,len(y))ys=np.where(x>255*len(y) *0.6)#竖线xs=np.where(y>255*len(x) *0.80)#横线ys=list(ys[0])
xs=list(xs[0])
xs2=[]
ys2=[]
xs=[0]+xsforjinrange(len(xs) -1):
ifxs[j+1] -xs[j] <20: continuexs2.append(xs[j])
xs2.append(xs[-1])
ys=[0]+ysforiinrange(len(ys) -1):
ifys[i+1] -ys[i] <20: continueys2.append(ys[i])
ys2.append(ys[-1])
print(xs)
print(xs2)
print(ys)
print(ys2)
xs=xs2ys=ys2# for j in range(len(xs) - 1):#     for i in range(len(ys) - 1):#         # 在分割时,第一个参数为y坐标,第二个参数为x坐标#         ROI = image[xs[j]:xs[j + 1], ys[i]:ys[i + 1]]  # 减去3的原因是由于我缩小ROI范围#         # cv2.imshow("分割后子图片展示:",ROI)#         # cv2.waitKey(0)##         b, g, r = cv2.split(ROI)  # 分别提取B、G、R通道#         img_new1 = cv2.merge([r, g, b])  # 重新组合为R、G、B##         if np.var(img_new1) > 1000:#             print('第{0}行--第{1}列----------------'.format(j, i))#             print(np.var(img_new1))#             plt.xticks([]), plt.yticks([])  # 隐藏x和y轴#             plt.imshow(img_new1)#             plt.savefig('./out/第{0}行,第{1}列.png'.format(j, i))#             # plt.show()# text = pytesseract.image_to_string(img_new1, lang='chi_sim+eng')  # 识别图片文字returnxs,ysimportosTemp_Dir1='./OCR/'forroot, dirs, filesinos.walk(Temp_Dir1, topdown=False):
for (i_,file_path) inenumerate(files):
print(i_,file_path)
tess_ocr(os.path.join(root, file_path))
目录
相关文章
|
5月前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
1421 0
|
6月前
|
存储 人工智能 前端开发
​​LangChain默认工具正在污染你的知识库!PDF解析崩溃真相​
本文深入探讨RAG项目中PDF解析的痛点与解决方案,分析LangChain默认工具的局限性,提出专业级文档处理架构设计与工具选型策略,涵盖表格图像处理、多模态解析与可扩展管道实现,助力提升RAG系统效果。
519 6
|
5月前
|
小程序
公众号如何添加附传Word、Excel、Pdf、PPT文档
公众号里添加一些文档给公众号粉丝下载,比如课件PPT、申请表Word文档、岗位需求Excel表、大赛入围/获奖名单等。公众号本身是不支持直接上传文件的,但我们可以通过附件小程序“间接”上传文件。
798 0
|
8月前
|
存储 安全 算法
Java 集合面试题 PDF 下载及高频考点解析
本文围绕Java集合面试题展开,详细解析了集合框架的基本概念、常见集合类的特点与应用场景。内容涵盖`ArrayList`与`LinkedList`的区别、`HashSet`与`TreeSet`的对比、`HashMap`与`ConcurrentHashMap`的线程安全性分析等。通过技术方案与应用实例,帮助读者深入理解集合类的特性和使用场景,提升解决实际开发问题的能力。文末附带资源链接,供进一步学习参考。
199 4
|
9月前
|
人工智能 算法 安全
使用CodeBuddy实现批量转换PPT、Excel、Word为PDF文件工具
通过 CodeBuddy 实现本地批量转换工具,让复杂的文档处理需求转化为 “需求描述→代码生成→一键运行” 的极简流程,真正实现 “技术为效率服务” 的目标。感兴趣的快来体验下把
497 10
|
9月前
|
安全 BI
AiPy实战:批量解析 PDF 漏洞报告,今日高风险数据一键归档
作为安全合规部门的效率神器,AiPy工具让处理200+份PDF漏洞报告变得简单高效。只需三步:批量导入文件、精准提取高风险漏洞数据(如编号、名称、类型等),并生成无重复的Excel报表,极大减少手动操作与错误。示例中,从指定目录提取含“高”字样的漏洞信息,并按要求保存为以日期命名的Excel文件,确保数据唯一且完整。相比传统手动方式,AiPy不仅提升工作效率,还留出更多时间专注安全策略优化与技术研究,助你成为团队核心骨干!
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
3303 65
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
11月前
|
数据采集 JSON 数据可视化
JSON数据解析实战:从嵌套结构到结构化表格
在信息爆炸的时代,从杂乱数据中提取精准知识图谱是数据侦探的挑战。本文以Google Scholar为例,解析嵌套JSON数据,提取文献信息并转换为结构化表格,通过Graphviz制作技术关系图谱,揭示文献间的隐秘联系。代码涵盖代理IP、请求头设置、JSON解析及可视化,提供完整实战案例。
682 4
JSON数据解析实战:从嵌套结构到结构化表格
|
11月前
|
数据采集 前端开发 JavaScript
金融数据分析:解析JavaScript渲染的隐藏表格
本文详解了如何使用Python与Selenium结合代理IP技术,从金融网站(如东方财富网)抓取由JavaScript渲染的隐藏表格数据。内容涵盖环境搭建、代理配置、模拟用户行为、数据解析与分析等关键步骤。通过设置Cookie和User-Agent,突破反爬机制;借助Selenium等待页面渲染,精准定位动态数据。同时,提供了常见错误解决方案及延伸练习,帮助读者掌握金融数据采集的核心技能,为投资决策提供支持。注意规避动态加载、代理验证及元素定位等潜在陷阱,确保数据抓取高效稳定。
352 17
|
12月前
|
文字识别 Serverless 开发工具
【全自动改PDF名】批量OCR识别提取PDF自定义指定区域内容保存到 Excel 以及根据PDF文件内容的标题来批量重命名
学校和教育机构常需处理成绩单、报名表等PDF文件。通过OCR技术,可自动提取学生信息并录入Excel,便于统计分析和存档管理。本文介绍使用阿里云服务实现批量OCR识别、内容提取、重命名及导出表格的完整步骤,包括开通相关服务、编写代码、部署函数计算和设置自动化触发器等。提供Python示例代码和详细操作指南,帮助用户高效处理PDF文件。 链接: - 百度网盘:[链接](https://pan.baidu.com/s/1mWsg7mDZq2pZ8xdKzdn5Hg?pwd=8866) - 腾讯网盘:[链接](https://share.weiyun.com/a77jklXK)
1805 5