本地 IDC 中的 K8s 集群如何以 Serverless 方式使用云上计算资源

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 本地 IDC 中的 K8s 集群如何以 Serverless 方式使用云上计算资源

作者:庄宇


在前一篇文章应对突发流量,如何快速为自建 K8s 添加云上弹性能力》中,我们介绍了如何为 IDC 中 K8s 集群添加云上节点,应对业务流量的增长,通过多级弹性调度,灵活使用云上资源,并通过自动弹性伸缩,提高使用率,降低云上成本。


这种直接添加节点的方式,适合需要自定义配置节点(runtime,kubelet,NVIDIA 等),需要特定 ECS 实例规格等场景。同时,这种方式意味您需要自行维护云上节点池。


如果您不想维护云上节点池,您可以选择 Serverless 方式使用阿里云 ECI 弹性容器实例运行业务 Pod,更加高效弹性的使用云上 CPU/GPU 资源。


概述


通过 Serverless 方式使用云上计 CPU/GPU 资源,针对的问题依然是 IDC 中 K8s 集群的弹性能力不足,不能满足业务的快速增长、周期性业务增长和突发业务流量。


通过 Serverless 方式,可以在 K8s 集群直接提交业务 Pod,Pod 将使用阿里云 ECI 弹性容器实例运行,ECI 弹性容器实例启动速度快,与业务 Pod 的生命周期一致,按 Pod 运行时间计费。从而不需要为 IDC 中 K8s 集群创建云上节点,不需要规划云上资源容量,不需要等待 ECS 创建完成,实现了极致弹性,并节省了节点运维成本。


IDC 中 K8s 集群以 Serverless 方式使用云上 CPU/GPU 资源,适合以下业务场景:


  • 在线业务的波峰波谷弹性伸缩:如在线教育、电商等行业有着明显的波峰波谷计算特征。使用 Serverless ECI 可以显著减少固定资源池的维护,降低计算成本。
  • 数据计算:使用 Serverless ECI 承载 Spark、Presto、ArgoWorkflow 等计算场景,按 Pod 运行时间计费,有效降低计算成本。
  • CI/CD Pipeline:Jenkins、Gitlab-Runner。
  • Job 任务:定时任务、AI。



演示-IDC 中 K8s 集群以 Serverless 方式使用云上资源


1. 前提条件

已经通过 ACK One 注册机群接入 IDC 中 K8s 集群,参见《选对方法,K8s 多集群管理没那么难》


2. 安装 ack-virtual-node 组件

通过 ACK One 注册集群控制台安装 ack-virtual-node 组件,安装组件后,通过注册集群 kubeconfig 查看集群节点池。virtual-kubelet 为虚拟节点,对接阿里云 Serverless ECI。


kubectl get node
NAME                               STATUS   ROLES    AGE    VERSION
iz8vb1xtnuu0ne6b58hvx0z            Ready    master   4d3h   v1.20.9   //IDC集群节点,示例只有1个master节点,同时也是worker节点,可以运行业务容器
virtual-kubelet-cn-zhangjiakou-a   Ready    agent    99s    v1.20.9。//安装ack-virtual-node组件生产的虚拟节点


3. 使用 Serverless ECI 运行 Pod(CPU/GPU 任务)

方式一:配置 Pod 标签,为 Pod 添加标签 alibabacloud.com/eci=true,Pod 将以 Serverless ECI 方式运行。示例中,使用 GPU ECI 实例运行 CUDA 任务,您不需要安装配置 NVIDIA driver 和 runtime,真正做到 Serverless 化运行。


a. 提交 Pod,使用 Serverless ECI 运行。


> cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: gpu-pod
  labels:
    alibabacloud.com/eci: "true"  # 指定Pod使用Serverless ECI运行
  annotations:
    k8s.aliyun.com/eci-use-specs: ecs.gn5-c4g1.xlarge  # 指定支持的GPU规格,该规格具备1个NVIDIA P100 GPU
spec:
  restartPolicy: Never
  containers:
    - name: cuda-container
      image: acr-multiple-clusters-registry.cn-hangzhou.cr.aliyuncs.com/ack-multiple-clusters/cuda10.2-vectoradd
      resources:
        limits:
          nvidia.com/gpu: 1 # 申请1个GPU
EOF


b. 查看 Pod,Pod 运行在虚拟节点 virtual-kubelet 上,实际后台使用阿里云 Serverless ECI 运行。


> kubectl get pod -o wide
NAME       READY   STATUS      RESTARTS   AGE     IP              NODE                               NOMINATED NODE   READINESS GATES
gpu-pod    0/1     Completed   0          5m30s   172.16.217.90   virtual-kubelet-cn-zhangjiakou-a   <none>           <none>
> kubectl logs gpu-pod
Using CUDA Device [0]: Tesla P100-PCIE-16GB
GPU Device has SM 6.0 compute capability
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done


方式二:设置命名空间标签

为命名空间设置标签 alibabacloud.com/eci=true,命名空间中所有新建 pod,将以 Serverless ECI 方式运行。


kubectl label namespace <namespace-name> alibabacloud.com/eci=true


4. 多级弹性调度

上面的演示中,我们通过设置 Pod 或者命名空间的标签以使用 Serverless ECI 运行 Pod。如果您期望应用运行过程中优先使用 IDC 中的节点资源运行 Pod,当 IDC 资源不足时,再使用阿里云 Serverless ECI 运行 Pod。您可以使用 ACK One 注册集群的多级弹性调度,通过安装 ack-co-scheduler 组件,您可以定义 ResourcePolicy CR 对象,使用多级弹性调度功能。


ResourcePolicy CR 是命名空间资源,重要参数解析:


  • selector:声明 ResourcePolicy 作用于同一命名空间下 label 上打了 key1=value1 的 Pod
  • strategy:调度策略选择,目前只支持 prefer
  • units:用户自定义的调度单元。应用扩容时,将按照 units 下资源的顺序选择资源运行;应用缩容时,将按照逆序进行缩容
  • resource:弹性资源的类型,目前支持 idc、ecs 和 eci 三种类型
  • nodeSelector:用 node 的 label 标识该调度单元下的节点,只对 ecs 资源生效
  • max:在该组资源最多部署多少个实例


步骤如下:

1) 定义 ResourcePolicy CR,优先使用 IDC 中集群资源,再使用云上 Serverless ECI 资源。


> cat << EOF | kubectl apply -f -
apiVersion: scheduling.alibabacloud.com/v1alpha1
kind: ResourcePolicy
metadata:
  name: cost-balance-policy
spec:
  selector:
    app: nginx           // 选择应用Pod
  strategy: prefer
  units:
  - resource: idc        //优先使用idc指定使用IDC中节点资源
  - resource: eci        //当idc节点资源不足时,使用Serverless ECI
EOF


2) 创建应用 Deployment,启动 2 个副本,每个副本需要 2 个 CPU。


> cat << EOF | kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx
  labels:
    app: nginx
spec:
  replicas: 2
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      name: nginx
      annotations:
        addannotion: "true"
      labels:
        app: nginx      # 此处要与上一步创建的ResourcePolicy的selector相关联。
    spec:
      schedulerName: ack-co-scheduler
      containers:
      - name: nginx
        image: acr-multiple-clusters-registry.cn-hangzhou.cr.aliyuncs.com/ack-multiple-clusters/nginx
        resources:
          requests:
            cpu: 2
          limits:
            cpu: 2
EOF


3) 执行以下命令对应用扩容 4 个副本,IDC 中 K8s 集群只有一个 6CPU 节点,最多启动 2 个 nginx pods(系统资源预留,无法启动 3 个 pod)。剩余的 2 个副本在 IDC 节点资源不足后,自动使用阿里云 Serverless ECI 运行 Pods。


kubectl scale deployment nginx --replicas 4


4) 查看 Pod 运行情况,2 个 Pod 运行在 IDC 中的节点,2 个 Pod 使用虚拟节点在阿里云 Serverless ECI 上运行。


> kubectl get pod -o widek get pod -o wideNAME                     READY   STATUS    RESTARTS   AGE     IP              NODE                      nginx-79cd98b4b5-97s47   1/1     Running   0          84s     10.100.75.22    iz8vb1xtnuu0ne6b58hvx0z   nginx-79cd98b4b5-gxd8z   1/1     Running   0          84s     10.100.75.23    iz8vb1xtnuu0ne6b58hvx0z   nginx-79cd98b4b5-k55rb   1/1     Running   0          58s     10.100.75.24    virtual-kubelet-cn-zhangjiakou-anginx-79cd98b4b5-m9jxm   1/1     Running   0          58s     10.100.75.25    virtual-kubelet-cn-zhangjiakou-a


总结


本文介绍了基于 ACK One 注册集群实现 IDC 中 K8s 集群以 Serverless ECI 方式使用阿里云 CPU 和 GPU 计算资源,以应对业务流量增长。这种方式,完全 Serverless 化,无需额外运维云上节点,按 Pod 运行时间计费,灵活高效。


后续我们将陆续推出 ACK One 注册集群的系列文章,包括:容灾备份,安全管理等。欢迎通过搜索钉钉群号加入我们。(群号:35688562


参考文档:

[1] 注册集群概述

https://help.aliyun.com/document_detail/155208.html

[2] 使用弹性容器ECI扩容集群

https://help.aliyun.com/document_detail/164370.html

[3] ECI支持的实例类型

https://help.aliyun.com/document_detail/451262.html

[4] 多级弹性调度

https://help.aliyun.com/document_detail/446694.html


点击此处,查看 ACK One 更多产品详情

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
10天前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。
|
8天前
|
Kubernetes Ubuntu 网络安全
ubuntu使用kubeadm搭建k8s集群
通过以上步骤,您可以在 Ubuntu 系统上使用 kubeadm 成功搭建一个 Kubernetes 集群。本文详细介绍了从环境准备、安装 Kubernetes 组件、初始化集群到管理和使用集群的完整过程,希望对您有所帮助。在实际应用中,您可以根据具体需求调整配置,进一步优化集群性能和安全性。
44 12
|
13天前
|
Kubernetes 网络协议 应用服务中间件
Kubernetes Ingress:灵活的集群外部网络访问的利器
《Kubernetes Ingress:集群外部访问的利器-打造灵活的集群网络》介绍了如何通过Ingress实现Kubernetes集群的外部访问。前提条件是已拥有Kubernetes集群并安装了kubectl工具。文章详细讲解了Ingress的基本组成(Ingress Controller和资源对象),选择合适的版本,以及具体的安装步骤,如下载配置文件、部署Nginx Ingress Controller等。此外,还提供了常见问题的解决方案,例如镜像下载失败的应对措施。最后,通过部署示例应用展示了Ingress的实际使用方法。
29 2
|
24天前
|
存储 弹性计算 关系型数据库
活动实践 | 告别资源瓶颈,函数计算驱动多媒体文件处理测评
本方案介绍了一种高效处理文件的方法,适用于企业办公和社交媒体应用。通过阿里云的函数计算、对象存储OSS和轻量消息队列,实现文件的异步处理,如格式转换和水印添加,有效减轻了核心应用的负担,提高了业务稳定性和资源利用率。方案包括云服务器ECS、云数据库RDS、OSS存储等组件,支持快速部署和资源清理。
|
25天前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
|
2月前
|
关系型数据库 Serverless 分布式数据库
PolarDB Serverless 模式通过自动扩缩容技术,根据实际工作负载动态调整资源,提高系统灵活性与成本效益
PolarDB Serverless 模式通过自动扩缩容技术,根据实际工作负载动态调整资源,提高系统灵活性与成本效益。用户无需预配高固定资源,仅需为实际使用付费,有效应对流量突变,降低总体成本。示例代码展示了基本数据库操作,强调了合理规划、监控评估及结合其他云服务的重要性,助力企业数字化转型。
33 6
|
2月前
|
Kubernetes 监控 Cloud Native
Kubernetes集群的高可用性与伸缩性实践
Kubernetes集群的高可用性与伸缩性实践
78 1
|
3月前
|
JSON Kubernetes 容灾
ACK One应用分发上线:高效管理多集群应用
ACK One应用分发上线,主要介绍了新能力的使用场景
|
2月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
102 1
|
4月前
|
人工智能 自然语言处理 Serverless
阿里云函数计算 x NVIDIA 加速企业 AI 应用落地
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
185 13

相关产品

  • 容器服务Kubernetes版