掌握Python的常用模块numpy(二)

简介: 掌握Python的常用模块numpy(二)

NumPy 数组迭代

数组迭代

迭代意味着逐一遍历元素。

当我们在 numpy 中处理多维数组时,可以使用 python 的基本 for 循环来完成此操作。

如果我们对 1-D 数组进行迭代,它将逐一遍历每个元素。

实例

迭代以下一维数组的元素:

import numpy as np
arr = np.array([1, 2, 3])
for x in arr:
  print(x)

使用 nditer() 迭代数组

函数 nditer() 是一个辅助函数,从非常基本的迭代到非常高级的迭代都可以使用。它解决了我们在迭代中面临的一些基本问题,让我们通过例子进行介绍。

迭代每个标量元素

在基本的 for 循环中,迭代遍历数组的每个标量,我们需要使用 n 个 for 循环,对于具有高维数的数组可能很难编写。

实例

遍历以下 3-D 数组:

import numpy as np
arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
for x in np.nditer(arr):
  print(x)

迭代不同数据类型的数组

我们可以使用 op_dtypes 参数,并传递期望的数据类型,以在迭代时更改元素的数据类型。

NumPy 不会就地更改元素的数据类型(元素位于数组中),因此它需要一些其他空间来执行此操作,该额外空间称为 buffer,为了在 nditer() 中启用它,我们传参 flags=['buffered']。

实例

以字符串形式遍历数组:

import numpy as np
arr = np.array([1, 2, 3])
for x in np.nditer(arr, flags=['buffered'], op_dtypes=['S']):
  print(x)

NumPy 数组连接

连接 NumPy 数组

连接意味着将两个或多个数组的内容放在单个数组中。

在 SQL 中,我们基于键来连接表,而在 NumPy 中,我们按轴连接数组。

我们传递了一系列要与轴一起连接到 concatenate() 函数的数组。如果未显式传递轴,则将其视为 0。

实例

连接两个数组:

import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.concatenate((arr1, arr2))
print(arr)

实例

沿着行 (axis=1) 连接两个 2-D 数组:

import numpy as np
arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
arr = np.concatenate((arr1, arr2), axis=1)
print(arr)

使用堆栈函数连接数组

堆栈与级联相同,唯一的不同是堆栈是沿着新轴完成的。

我们可以沿着第二个轴连接两个一维数组,这将导致它们彼此重叠,即,堆叠(stacking)。

我们传递了一系列要与轴一起连接到 concatenate() 方法的数组。如果未显式传递轴,则将其视为 0。

实例

import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.stack((arr1, arr2), axis=1)
print(arr)

沿行堆叠

NumPy 提供了一个辅助函数:hstack() 沿行堆叠。

实例

import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.hstack((arr1, arr2))
print(arr)

沿列堆叠

NumPy 提供了一个辅助函数:vstack() 沿列堆叠。

实例

import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.vstack((arr1, arr2))
print(arr)

沿高度堆叠(深度)

NumPy 提供了一个辅助函数:dstack() 沿高度堆叠,该高度与深度相同。

实例

import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.dstack((arr1, arr2))
print(arr)

NumPy 数组拆分

拆分 NumPy 数组

拆分是连接的反向操作。

连接(Joining)是将多个数组合并为一个,拆分(Spliting)将一个数组拆分为多个。

我们使用 array_split() 分割数组,将要分割的数组和分割数传递给它。

实例

将数组分为 3 部分:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 3)
print(newarr)

注释:返回值是一个包含三个数组的数组。

如果数组中的元素少于要求的数量,它将从末尾进行相应调整。

实例

将数组分为 4 部分

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 4)
print(newarr)

提示:我们也有 split() 方法可用,但是当源数组中的元素较少用于拆分时,它将不会调整元素,如上例那样,array_split() 正常工作,但 split() 会失败。

拆分为数组

array_split() 方法的返回值是一个包含每个分割的数组。

如果将一个数组拆分为 3 个数组,则可以像使用任何数组元素一样从结果中访问它们:

实例

访问拆分的数组:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 3)
print(newarr[0])
print(newarr[1])
print(newarr[2])

NumPy 数组排序

数组排序

排序是指将元素按有序顺序排列

有序序列是拥有与元素相对应的顺序的任何序列,例如数字或字母、升序或降序。

NumPy ndarray 对象有一个名为 sort() 的函数,该函数将对指定的数组进行排序。

实例

对数组进行排序:

import numpy as np
arr = np.array([3, 2, 0, 1])
print(np.sort(arr))

注释:此方法返回数组的副本,而原始数组保持不变。

您还可以对字符串数组或任何其他数据类型进行排序:

实例

对数组以字母顺序进行排序:

import numpy as np
arr = np.array(['banana', 'cherry', 'apple'])
print(np.sort(arr))

实例

对布尔数组进行排序:

import numpy as np
arr = np.array([True, False, True])
print(np.sort(arr))

NumPy 数组过滤

数组过滤

从现有数组中取出一些元素并从中创建新数组称为过滤(filtering)。

在 NumPy 中,我们使用布尔索引列表来过滤数组。

布尔索引列表是与数组中的索引相对应的布尔值列表。

如果索引处的值为 True,则该元素包含在过滤后的数组中;如果索引处的值为 False,则该元素将从过滤后的数组中排除。

实例

用索引 0 和 2、4 上的元素创建一个数组:

import numpy as np
arr = np.array([61, 62, 63, 64, 65])
x = [True, False, True, False, True]
newarr = arr[x]
print(newarr)

上例将返回 [61, 63, 65],为什么?

因为新过滤器仅包含过滤器数组有值 True 的值,所以在这种情况下,索引为 0 和 2、4。

创建过滤器数组

在上例中,我们对 TrueFalse 值进行了硬编码,但通常的用途是根据条件创建过滤器数组。

实例

创建一个仅返回大于 62 的值的过滤器数组:

import numpy as np
arr = np.array([61, 62, 63, 64, 65])
# 创建一个空列表
filter_arr = []
# 遍历 arr 中的每个元素
for element in arr:
  # 如果元素大于 62,则将值设置为 True,否则为 False:
  if element > 62:
    filter_arr.append(True)
  else:
    filter_arr.append(False)
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)

实例

创建一个过滤器数组,该数组仅返回原始数组中的偶数元素:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
# 创建一个空列表
filter_arr = []
# 遍历 arr 中的每个元素
for element in arr:
  # 如果元素可以被 2 整除,则将值设置为 True,否则设置为 False
  if element % 2 == 0:
    filter_arr.append(True)
  else:
    filter_arr.append(False)
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)

直接从数组创建过滤器

上例是 NumPy 中非常常见的任务,NumPy 提供了解决该问题的好方法。

我们可以在条件中直接替换数组而不是 iterable 变量,它会如我们期望地那样工作。

实例

创建一个仅返回大于 62 的值的过滤器数组:

import numpy as np
arr = np.array([61, 62, 63, 64, 65])
filter_arr = arr > 62
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)

实例

创建一个过滤器数组,该数组仅返回原始数组中的偶数元素:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
filter_arr = arr % 2 == 0
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)

 

相关文章
|
7天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
18 3
|
9天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
28 5
|
7天前
|
Java 程序员 开发者
Python的gc模块
Python的gc模块
|
10天前
|
数据采集 Web App开发 JavaScript
python-selenium模块详解!!!
Selenium 是一个强大的自动化测试工具,支持 Python 调用浏览器进行网页抓取。本文介绍了 Selenium 的安装、基本使用、元素定位、高级操作等内容。主要内容包括:发送请求、加载网页、元素定位、处理 Cookie、无头浏览器设置、页面等待、窗口和 iframe 切换等。通过示例代码帮助读者快速掌握 Selenium 的核心功能。
50 5
|
8天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
22 2
|
11天前
|
Python
SciPy 教程 之 SciPy 模块列表 13
SciPy教程之SciPy模块列表13:单位类型。常量模块包含多种单位,如公制、二进制(字节)、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。示例代码展示了如何使用`constants`模块获取零摄氏度对应的开尔文值(273.15)和华氏度与摄氏度的转换系数(0.5556)。
14 1
|
9天前
|
Python
SciPy 教程 之 SciPy 模块列表 16
SciPy教程之SciPy模块列表16 - 单位类型。常量模块包含多种单位,如公制、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。示例代码展示了力学单位的使用,如牛顿、磅力和千克力等。
11 0
|
9天前
|
JavaScript Python
SciPy 教程 之 SciPy 模块列表 15
SciPy 教程之 SciPy 模块列表 15 - 功率单位。常量模块包含多种单位,如公制、质量、时间等。功率单位中,1 瓦特定义为 1 焦耳/秒,表示每秒转换或耗散的能量速率。示例代码展示了如何使用 `constants` 模块获取马力值(745.6998715822701)。
12 0
|
9天前
|
JavaScript Python
SciPy 教程 之 SciPy 模块列表 15
SciPy教程之SciPy模块列表15:单位类型。常量模块包含多种单位,如公制、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。功率单位以瓦特(W)表示,1W=1J/s。示例代码展示了如何使用`constants`模块获取马力(hp)的值,结果为745.6998715822701。
13 0
|
11天前
|
Python
SciPy 教程 之 SciPy 模块列表 13
SciPy 教程之 SciPy 模块列表 13 - 单位类型。常量模块包含多种单位:公制、二进制(字节)、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。示例:`constants.zero_Celsius` 返回 273.15 开尔文,`constants.degree_Fahrenheit` 返回 0.5555555555555556。
11 0