大数据和人工智能为广告主带来的价值

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

1、所有这些不同时机加在一起,可以给广告主指出特定场合的最佳广告。这称为契机评分(moment scoring),由此产生的这种同步计算结果是人工智能(AI)与大数据结合的产物。

2、有了这么多的数据积累和这么快的决策速度,那全自动的广告投放就变得可行,不过这并不意味着不需要人的贡献。记住,人工智能的全部学习过程都需要人的理解力,去调整参数、广告传递的信息、广告创意,并且优化它们的结果。

3、能了解广告每一次被受众看到的实际价值将是一个重要的差异化优势。用户现在对你的广告作出反应的可能性有多大?这是主要问题。而最佳的做法是,如果你已经采用了人工智能和大数据来了解受众的反应,那么就不要再凭空去猜测。

image

近年来,人们使用媒体与社交网络的方式发生了巨大的变化。一个很好的例子就是移动媒体提供了难能可贵的便利性。移动媒体是21世纪的一个强烈特征,促使我们去提升管理大量信息的能力。这种环境下,广告主都想要找到优质的服务、技术、应用,来帮助自己组织和实施程序化的。

我们生活在数字时代中,消费者拥有充分的选择权,由此迫使广告主进行重大调整,提供独有的客户体验、个性化定制并且适应消费者的偏好与需求。每天,无论我们在做什么,我们都会收到激发“灵感与欲望”的信息。因而我们认为,对于广告主而言,只是靠个人资料信息来争取目标受众,这种旧的做法再也不顶事了。如今,关键在于能否找准契机!

在这个新世界里,广告主的成败将取决于能否理解最理想的时机在哪并据此果断采取行动,还取决于能否提高投资回报率。要做到这一点,就需要挖掘其他参数,比如了解你的客户是谁,知道他们在不同情况下会做出何种反应,快速决定如何及何时向用户提出建议。一个人每天的行为习惯很可能都会不一样。同样是每天下午两点前十四个小时的行为,周二与周六可能完全是两码事。我们周围的一切都会影响购买决定——一个人是不是买了张机票,外面是不是在下雨,或者最近看了一段有关如何开发一块新地的网络视频。

所有这些不同时机加在一起,可以给广告主指出特定场合的最佳广告。这称为契机评分(moment scoring),由此产生的这种同步计算结果是人工智能(AI)与大数据结合的产物。随着算法不断地产生即时计算结果,我们的AI也在不断迭代演进,在这个过程中信息得到添加,让市场营销对消费者下一次有机会观看广告的影响力得到提高与加强。数据在这种模式下源源不断地生产出来,让广告主能以理想的公众形象表达,完成更多成功的广告活动。

人工智能应用效果的另一个例子是“快速判断”。通过对网络足迹进行过滤,依据消费者上网期间的购买行为,就能够有针对性地向他们投放广告活动。比如有人逛体育类网站时买了东西,就会向他投放跟体育有关的广告。随着时间的推移,经过学习的AI就能识别这些用户当中谁是某类运动(比如足球)的爱好者。利用这个结果,消费者将获得一个新的评分,相比过去那种基于消费者泛泛兴趣的评分能更好地帮助广告主提高对目标受众的定位精度。

有了这么多的数据积累和这么快的决策速度,那全自动的广告投放就变得可行,不过这并不意味着不需要人的贡献。记住,人工智能的全部学习过程都需要人的理解力,去调整参数、广告传递的信息、广告创意,并且优化它们的结果。

在这个复杂的虚拟世界里,对于一个成功的广告活动而言,能了解广告每一次被受众看到的实际价值将是一个重要的差异化优势。用户现在对你的广告作出反应的可能性有多大?这是主要问题。而最佳的做法是,如果你已经采用了人工智能和大数据来了解受众的反应,那么就不要再凭空去猜测。换句话说,要让消费者对你的品牌产生好感,关键就在于找准契机,而且这也自然能让你的广告活动达到最佳效果。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
深入探索人工智能与大数据的融合之路
本文旨在探讨人工智能(AI)与大数据技术如何相互促进,共同推动现代科技的进步。通过分析两者结合的必要性、挑战以及未来趋势,为读者提供一个全面的视角,理解这一领域内的最新发展动态及其对行业的影响。文章不仅回顾了历史背景,还展望了未来可能带来的变革,并提出了几点建议以促进更高效的技术整合。
|
29天前
|
机器学习/深度学习 人工智能 分布式计算
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
108 35
|
1月前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
84 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
27天前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
64 7
|
1月前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2024年12月】
大数据& AI 产品技术月刊【2024年12月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
2月前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2024年11月】
大数据& AI 产品技术月刊【2024年11月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
2月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
3月前
|
机器学习/深度学习 人工智能 算法
探索人工智能与大数据的融合之道####
— 本文旨在探讨人工智能(AI)与大数据如何协同工作,以推动技术创新和产业升级。通过分析二者的基本概念、核心技术及应用场景,揭示它们相互促进的内在机制,并展望未来发展趋势。文章指出,AI提供了智能化处理数据的能力,而大数据则为AI提供了海量的训练资源,两者结合将开启无限可能。 ####
|
3月前
|
人工智能 算法 搜索推荐
探索人工智能与大数据的融合之道####
本文深入探讨了人工智能(AI)与大数据之间的紧密联系与相互促进的关系,揭示了二者如何共同推动科技进步与产业升级。在信息爆炸的时代背景下,大数据为AI提供了丰富的学习材料,而AI则赋予了大数据分析前所未有的深度与效率。通过具体案例分析,本文阐述了这一融合技术如何在医疗健康、智慧城市、金融科技等多个领域展现出巨大潜力,并对未来发展趋势进行了展望,强调了持续创新与伦理考量的重要性。 ####
|
3月前
|
数据采集 机器学习/深度学习 人工智能
探索人工智能与大数据的融合之路####
本文将深入探讨人工智能(AI)与大数据之间的共生关系,揭示二者如何相互促进,共同推动技术边界的拓展。不同于传统摘要的概述形式,本部分将以一个生动的比喻开篇:如果把大数据比作广阔无垠的数字海洋,那么人工智能就是航行其间的智能航船,两者相辅相成,缺一不可。随后,简述文章将从数据采集、处理、分析到决策应用的全流程中,详细阐述AI如何借助大数据的力量实现自我迭代与优化,以及大数据如何在AI算法的驱动下释放出前所未有的价值。最后,预告文章还将探讨当前面临的挑战与未来趋势,为读者勾勒一幅AI与大数据融合发展的宏伟蓝图。 ####