【Elman回归预测】基于Elman神经网络实现数据回归预测附MATLAB代码

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 【Elman回归预测】基于Elman神经网络实现数据回归预测附MATLAB代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

基于Elman神经网络的数据回归预测是一种利用Elman神经网络模型来进行数据回归问题的预测和估计。Elman神经网络也被称为递归神经网络(Recurrent Neural Network,RNN),它具有记忆能力,可以处理序列数据。以下是一种可能的实施步骤:

  1. 数据准备:收集和整理用于回归预测的数据集,包括输入特征和对应的目标值。确保数据集的质量和充分性。
  2. 数据预处理:对数据进行预处理,如归一化、标准化、特征工程等,以提高模型的训练效果和泛化能力。
  3. Elman神经网络模型设计:设计一个合适的Elman神经网络模型,通常包括输入层、隐藏层(具有循环连接)、输出层等。隐藏层的输出会被反馈到下一个时间步骤的输入中,实现记忆功能。
  4. 模型训练:使用准备好的数据集对Elman神经网络模型进行训练。可以采用反向传播算法和优化器(如梯度下降)来最小化预测值与真实值之间的损失函数,以更新模型的权重和偏置。
  5. 模型评估:使用测试数据集对训练好的Elman神经网络模型进行评估,计算预测结果与真实值之间的误差指标,如均方误差(Mean Squared Error,MSE)、均方根误差(Root Mean Squared Error,RMSE)等。
  6. 预测与推断:使用训练好的Elman神经网络模型对新的输入数据进行预测和推断,得到回归预测结果。
  7. 模型优化:根据评估结果和实际需求,对Elman神经网络模型进行优化和调整,如调整隐藏层的大小、增加正则化手段、调整学习率等,以提高模型的性能和精度。
  8. 模型应用:将优化后的Elman神经网络模型应用于实际场景中,进行数据回归预测和估计。

基于Elman神经网络的数据回归预测可以应用于各种领域,如时间序列分析、语音识别、自然语言处理等,以实现对复杂数据关系的准确预测和估计。

⛄ 代码

%% Elman神经网络预测%% 1.初始化clearclose allclcformat short %精确到小数点后4位,format long是精确到小数点后15位%% 2.读取读取data=xlsread('数据.xlsx'); %% Matlab2021版本以上无法使用xlsread函数,可用Load函数替代  % 设置神经网络的输入和输出input=data(:,1:end-1);    %第1列至倒数第2列为输入output=data(:,end);       %最后1列为输出N=length(output);         %计算样本数量%% 3.设置训练集和测试集%(1)随机选取测试样本k=rand(1,N);[m,n]=sort(k);testNum=50;              %设定测试集样本数量 !仅需修改这里trainNum=N-testNum;       %设定训练集样本数量input_train = input(n(1:trainNum),:)';                   % 训练集输入output_train =output(n(1:trainNum))';                    % 训练集输出input_test =input(n(trainNum+1:trainNum+testNum),:)';    % 测试集输入output_test =output(n(trainNum+1:trainNum+testNum))';    % 测试集输出%(2)从数据后面选取测试样本%testNum=50;              %设定测试集样本数量 %trainNum=N-testNum;       %设定训练集样本数量%input_train = input(1:trainNum,:)';                   % 训练集输入%output_train =output(1:trainNum)';                    % 训练集输出%input_test =input(trainNum+1:trainNum+testNum,:)';    % 测试集输入%output_test =output(trainNum+1:trainNum+testNum)';    % 测试集输出%% 4.数据归一化[inputn,inputps]=mapminmax(input_train,0,1);         % 训练集输入归一化到[0,1]之间[outputn,outputps]=mapminmax(output_train);          % 训练集输出归一化到默认区间[-1, 1]inputn_test=mapminmax('apply',input_test,inputps);   % 测试集输入采用和训练集输入相同的归一化方式%% 5.求解最佳隐含层inputnum=size(input,2);   %size用来求取矩阵的行数和列数,1代表行数,2代表列数outputnum=size(output,2);disp(['输入层节点数:',num2str(inputnum),',  输出层节点数:',num2str(outputnum)])disp(['隐含层节点数范围为 ',num2str(fix(sqrt(inputnum+outputnum))+1),' 至 ',num2str(fix(sqrt(inputnum+outputnum))+10)])disp(' ')disp('最佳隐含层节点的确定...')%根据hiddennum=sqrt(m+n)+a,m为输入层节点数,n为输出层节点数,a取值[1,10]之间的整数MSE=1e+5;                             %误差初始化transform_func={'tansig','purelin'};  %激活函数采用tan-sigmoid和purelintrain_func='trainlm';                 %训练算法for hiddennum=fix(sqrt(inputnum+outputnum))+1:fix(sqrt(inputnum+outputnum))+10        net=newelm(inputn,outputn,hiddennum,transform_func,train_func); %构建Elman网络        % 设置网络参数    net.trainParam.epochs=1000;         % 设置训练次数    net.trainParam.lr=0.01;             % 设置学习速率    net.trainParam.goal=0.000001;       % 设置训练目标最小误差        % 进行网络训练    net=train(net,inputn,outputn);    an0=sim(net,inputn);      %仿真结果    mse0=mse(outputn,an0);    %仿真的均方误差    disp(['当隐含层节点数为',num2str(hiddennum),'时,训练集均方误差为:',num2str(mse0)])        %不断更新最佳的隐含层节点    if mse0<MSE        MSE=mse0;        hiddennum_best=hiddennum;    endenddisp(['最佳隐含层节点数为:',num2str(hiddennum_best),',均方误差为:',num2str(MSE)])%% 6.构建最佳隐含层的Elman神经网络net=newelm(inputn,outputn,hiddennum_best,transform_func,train_func);% 网络参数net.trainParam.epochs=1000;          % 训练次数net.trainParam.lr=0.01;              % 学习速率net.trainParam.goal=0.000001;        % 训练目标最小误差%% 7.网络训练net=train(net,inputn,outputn);       % train函数用于训练神经网络,调用蓝色仿真界面%% 8.网络测试an=sim(net,inputn_test);                     %训练完成的模型进行仿真测试test_simu=mapminmax('reverse',an,outputps);  %测试结果反归一化error=test_simu-output_test;                 %测试值和真实值的误差%% 9.结果输出% Elman预测值和实际值的对比图figureplot(output_test,'bo-','linewidth',1.5)hold onplot(test_simu,'rs-','linewidth',1.5)legend('实际值','预测值')xlabel('测试样本'),ylabel('指标值')title('Elman预测值和实际值的对比')set(gca,'fontsize',12)% Elamn测试集的预测误差图figureplot(error,'bo-','linewidth',1.5)xlabel('测试样本'),ylabel('预测误差')title('Elman神经网络测试集的预测误差')set(gca,'fontsize',12)figure;plotregression(output_test,test_simu,['Elman回归图']);figure;ploterrhist(test_simu-output_test,['Elman误差直方图']);%计算各项误差参数  [~,len]=size(output_test);             % len获取测试样本个数,数值等于testNum,用于求各指标平均值SSE1=sum(error.^2);                    % 误差平方和MAE1=sum(abs(error))/len;              % 平均绝对误差MSE1=error*error'/len;                 % 均方误差RMSE1=MSE1^(1/2);                      % 均方根误差MAPE1=mean(abs(error./output_test));   % 平均百分比误差r=corrcoef(output_test,test_simu);     % corrcoef计算相关系数矩阵,包括自相关和互相关系数R1=r(1,2);    % 显示各指标结果disp(' ')disp('各项误差指标结果:')disp(['误差平方和SSE为:',num2str(SSE1)])disp(['平均绝对误差MAE为:',num2str(MAE1)])disp(['均方误差MSE为:',num2str(MSE1)])disp(['均方根误差RMSE为:',num2str(RMSE1)])disp(['平均百分比误差MAPE为:',num2str(MAPE1*100),'%'])disp(['预测准确率为:',num2str(100-MAPE1*100),'%'])disp(['相关系数R为:',num2str(R1)])% 工作区中% output_test代表测试集% test_simu代表BP预测值% error代表误差

⛄ 运行结果

⛄ 参考文献

[1] 姜平,石琴,陈无畏,等.基于Elman型回归神经网络的公交客流预测[J].合肥工业大学学报:自然科学版, 2008, 31(3):4.DOI:10.3969/j.issn.1003-5060.2008.03.005.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
15天前
|
存储 安全 网络安全
云计算与网络安全:保护数据的新策略
【10月更文挑战第28天】随着云计算的广泛应用,网络安全问题日益突出。本文将深入探讨云计算环境下的网络安全挑战,并提出有效的安全策略和措施。我们将分析云服务中的安全风险,探讨如何通过技术和管理措施来提升信息安全水平,包括加密技术、访问控制、安全审计等。此外,文章还将分享一些实用的代码示例,帮助读者更好地理解和应用这些安全策略。
|
19天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:从漏洞到加密,保护数据的关键步骤
【10月更文挑战第24天】在数字化时代,网络安全和信息安全是维护个人隐私和企业资产的前线防线。本文将探讨网络安全中的常见漏洞、加密技术的重要性以及如何通过提高安全意识来防范潜在的网络威胁。我们将深入理解网络安全的基本概念,学习如何识别和应对安全威胁,并掌握保护信息不被非法访问的策略。无论你是IT专业人士还是日常互联网用户,这篇文章都将为你提供宝贵的知识和技能,帮助你在网络世界中更安全地航行。
|
22天前
|
存储 安全 网络安全
云计算与网络安全:如何保护您的数据
【10月更文挑战第21天】在这篇文章中,我们将探讨云计算和网络安全的关系。随着云计算的普及,网络安全问题日益突出。我们将介绍云服务的基本概念,以及如何通过网络安全措施来保护您的数据。最后,我们将提供一些代码示例,帮助您更好地理解这些概念。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
37 2
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
199 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现