Hadoop生态系统中的资源管理与调度技术:YARN的原理与应用案例

简介: Hadoop生态系统中的资源管理与调度技术:YARN的原理与应用案例

Hadoop生态系统中的资源管理与调度技术:YARN的原理与应用案例

Hadoop是一个开源的分布式计算框架,它提供了一种可扩展的,分布式存储和处理大规模数据集的能力。Hadoop生态系统中的资源管理与调度技术是实现高效的资源利用和任务调度的关键。其中,YARN(Yet Another Resource Negotiator)是Hadoop的资源管理框架,它负责集群中资源的分配和任务的调度。

YARN的原理
YARN的核心原理是将资源管理和任务调度分离。它由两个主要组件组成:资源管理器(ResourceManager)和应用程序管理器(ApplicationMaster)。

资源管理器(ResourceManager)是整个集群的主要组件,负责管理集群中的计算资源。它接收来自客户端的资源请求,并根据集群资源的可用情况进行分配。ResourceManager还负责监控集群中的资源使用情况,并根据需要进行资源的动态调整。

应用程序管理器(ApplicationMaster)是每个应用程序的主要组件,负责管理应用程序的生命周期和任务调度。当一个应用程序需要在集群中运行时,它会向ResourceManager提交一个应用程序。ResourceManager会为该应用程序分配一个ApplicationMaster,并将其部署到集群中的一个节点上。

一旦ApplicationMaster部署完成,它会与ResourceManager进行通信,获取可用的资源,并将任务分配给集群中的节点。ApplicationMaster还负责监控任务的执行情况,并在需要时向ResourceManager请求更多的资源。当应用程序执行完成后,ApplicationMaster会通知ResourceManager释放已使用的资源。

YARN的应用案例
YARN的资源管理和任务调度能力使其在各种大数据处理场景中得到广泛应用。以下是一个简单的YARN应用案例,展示了如何使用YARN进行分布式计算任务的调度。

首先,我们需要编写一个YARN应用程序,用于执行分布式计算任务。以下是一个简单的WordCount示例:

public class WordCount {
  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

然后,我们需要提交该应用程序到YARN集群中运行。可以使用以下命令来提交应用程序:

yarn jar wordcount.jar WordCount input output

其中,wordcount.jar是打包好的应用程序,input是输入文件的路径,output是输出文件的路径。

YARN会将该应用程序提交给ResourceManager,ResourceManager会为该应用程序分配一个ApplicationMaster,并将其部署到集群中的一个节点上。ApplicationMaster会与ResourceManager进行通信,获取可用的资源,并将任务分配给集群中的节点。

每个节点上的任务执行器会运行分配给它的任务,执行WordCount的Mapper和Reducer操作。Mapper操作将输入文件拆分为单词,并为每个单词生成一个键值对。Reducer操作将相同单词的键值对进行合并,并计算每个单词的频率。

最后,应用程序执行完成后,ApplicationMaster会通知ResourceManager释放已使用的资源。

总结
YARN是Hadoop生态系统中的资源管理框架,它的核心原理是将资源管理和任务调度分离。YARN的资源管理和任务调度能力使其在各种大数据处理场景中得到广泛应用。通过YARN,我们可以实现高效的资源利用和任务调度,从而更好地处理大规模数据集。

相关文章
|
7月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
299 79
|
11月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
465 2
|
11月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
406 1
|
分布式计算 Hadoop Devops
Hadoop集群配置https实战案例
本文提供了一个实战案例,详细介绍了如何在Hadoop集群中配置HTTPS,包括生成私钥和证书文件、配置keystore和truststore、修改hdfs-site.xml和ssl-client.xml文件,以及重启Hadoop集群的步骤,并提供了一些常见问题的故障排除方法。
327 3
Hadoop集群配置https实战案例
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
511 3
YARN(Hadoop操作系统)的架构
|
资源调度 分布式计算 Hadoop
使用YARN命令管理Hadoop作业
本文介绍了如何使用YARN命令来管理Hadoop作业,包括查看作业列表、检查作业状态、杀死作业、获取作业日志以及检查节点和队列状态等操作。
393 1
使用YARN命令管理Hadoop作业
|
12月前
|
分布式计算 NoSQL Java
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
171 2
|
12月前
|
分布式计算 负载均衡 算法
Hadoop-31 ZooKeeper 内部原理 简述Leader选举 ZAB协议 一致性
Hadoop-31 ZooKeeper 内部原理 简述Leader选举 ZAB协议 一致性
122 1
|
12月前
|
分布式计算 监控 Hadoop
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
177 1
|
12月前
|
分布式计算 Hadoop 网络安全
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
151 1

热门文章

最新文章

相关实验场景

更多