m基于FPGA的1024QAM调制信号产生模块verilog实现,包含testbench

简介: m基于FPGA的1024QAM调制信号产生模块verilog实现,包含testbench

1.算法仿真效果

本系统进行了Vivado2019.2平台的开发,Vivado2019.2仿真结果如下:

dcf2d245c374a84ae6ccd51068eb0a7c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

将1024调制信号导入到matlab显示星座图

2a681a6d3309b26810d4faf1fe416bef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
本文将详细介绍基于FPGA的1024QAM调制信号产生模块。本文将从以下几个方面进行介绍:1024QAM调制信号的基本原理、符号映射方式、并行化处理和FPGA实现等。

2.1. 1024QAM调制信号的基本原理

3ce9b6b61c7cf696ef24966cd7cf55e0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  1. 2符号映射方式

    1024QAM调制信号的符号映射方式有多种选择,例如Gray映射、正交映射等。在本文中,我们选择Gray映射方式,其具有较好的错误容忍性和功率效率。

    Gray映射的思想是将相邻的符号在二进制比特上只有一个位不同。例如,当a_n为0000000000时,其对应的符号为QAM调制图中的左下角点;当a_n为0000000001时,其对应的符号为左下角点往上移动一个单位。
    

2.3 并行化处理

   由于1024QAM调制信号需要处理的数据量较大,因此需要采用并行化处理的方法,以提高运算速度和降低硬件资源消耗。

  并行化处理的方法包括时间并行和空间并行。在本文中,我们选择时间并行的方法,即将数据流划分为多个并行处理单元,每个处理单元负责处理一部分数据,以实现并行化处理。如图3所示,将10个二进制比特分为5组,每组包含两个比特,每个比特对应一个并行处理单元。
   在并行处理的过程中,需要考虑数据的同步和处理单元之间的数据传输。一种常用的方法是采用流水线处理,即将数据流分为多个处理阶段,每个阶段包含多个并行处理单元,相邻阶段之间通过寄存器进行数据传输和同步。

2.4. FPGA实现

  FPGA是一种灵活可编程的硬件平台,可以根据具体需求进行定制化设计和实现。在实现基于FPGA的1024QAM调制信号产生模块时,需要根据具体硬件资源和运算速度要求进行设计和实现。通常,FPGA实现的步骤包括硬件描述语言编写、综合、布局布线、生成比特流和下载到FPGA芯片等。其中,硬件描述语言编写是实现的核心,可以采用Verilog或VHDL等语言进行编写。

   基于FPGA的1024QAM调制信号产生模块的实现方法,包括1024QAM调制信号的基本原理、符号映射方式、I并行化处理和FPGA实现等。通过合理的设计和优化,可以实现高效、稳定和可靠的1024QAM调制信号产生模块,适用于通信、雷达、信号处理等领域。

3.Verilog核心程序
```module TEST;

reg clk;
reg rst;
reg start;

wire  [9:0] parallel_data;
wire [15:0]sin;
wire [15:0]cos;
wire signed[19:0]  I_com;
wire signed[19:0]  Q_com;
wire signed[15:0]I_comcos;
wire signed[15:0]Q_comsin;


// DUT
tops_1024QAM_mod  top(
   .clk(clk),
   .rst(rst),
   .start(start),
   .parallel_data(parallel_data),
   .sin(sin),
   .cos(cos),
   .I_com(I_com),
   .Q_com(Q_com),
   .I_comcos(I_comcos),
   .Q_comsin(Q_comsin)
   );

//wire signed[23:0]I_comcos2;
//wire signed[23:0]Q_comsin2;
//wire signed[7:0]o_Ifir;
//wire signed[7:0]o_Qfir;
//wire signed[7:0]o_sdout;
//tops_256QAM_demod top2(
// .clk(clk),
// .rst(rst),
// .start(start),
// .I_comcos(I_comcos),
// .Q_comsin(Q_comsin),
// .I_comcos2(I_comcos2),
// .Q_comsin2(Q_comsin2),
// .o_Ifir(o_Ifir),
// .o_Qfir(o_Qfir),
// .o_sdout(o_sdout)
// );

initial begin
    clk = 0;
    rst = 0;
    start = 1;
    #10;
    rst = 1;
end

always #5
clk <= ~clk;

integer fout1;
integer fout2;
initial begin
fout1 = $fopen("II.txt","w");
fout2 = $fopen("QQ.txt","w");
end

```

相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench
本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。
|
1月前
|
数据采集 移动开发 算法
【硬件测试】基于FPGA的QPSK调制+软解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现QPSK调制与软解调系统,包含Testbench、高斯信道、误码率统计模块,并支持不同SNR设置。硬件版本新增ILA在线数据采集和VIO在线SNR设置功能,提供无水印完整代码及测试结果。通过VIO分别设置SNR为6dB和12dB,验证系统性能。配套操作视频便于用户快速上手。 理论部分详细解析QPSK调制原理及其软解调实现过程,涵盖信号采样、相位估计、判决与解调等关键步骤。软解调通过概率估计(如最大似然法)提高抗噪能力,核心公式为*d = d_hat / P(d_hat|r[n])*,需考虑噪声对信号点分布的影响。 附Verilog核心程序代码及注释,助力理解与开发。
73 5
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
本内容展示了基于Vivado2019.2的算法仿真效果,包括设置不同信噪比(SNR=8db和20db)下的结果及整体波形。同时,详细介绍了2ASK调制解调技术的原理与实现,即通过改变载波振幅传输二进制信号,并提供数学公式支持。此外,还涉及帧同步理论,用于确定数据帧起始位置。最后,给出了Verilog核心程序代码,实现了2ASK解调与帧同步功能,结合DDS模块生成载波信号,完成信号处理流程。
36 0
|
4月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
183 74
|
2月前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
|
5月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
270 69
|
5月前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
195 26
|
4月前
|
存储 编解码 算法
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
|
6月前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
179 8

热门文章

最新文章