深入 Seaborn:Python 数据可视化进阶

简介: 在上一篇介绍 Seaborn 的文章中,我们讨论了一些基础的可视化工具,例如直方图,以及如何使用 Seaborn 控制图形的样式和颜色。在这篇文章中,我们将深入 Seaborn 的中级使用,包括创建复杂的统计图形,如散点图矩阵、箱线图和小提琴图等。

在上一篇介绍 Seaborn 的文章中,我们讨论了一些基础的可视化工具,例如直方图,以及如何使用 Seaborn 控制图形的样式和颜色。在这篇文章中,我们将深入 Seaborn 的中级使用,包括创建复杂的统计图形,如散点图矩阵、箱线图和小提琴图等。

一、散点图矩阵

Seaborn 的 pairplot 函数可以创建一个散点图矩阵,用来展示多个变量间的关系。散点图矩阵中的每个子图展示了数据集中两个变量的关系。

下面的例子展示了如何使用 pairplot 创建散点图矩阵:

import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris

# 加载 iris 数据集
iris = load_iris()
data = iris.data
feature_names = iris.feature_names

# 创建 DataFrame
df = pd.DataFrame(data, columns=feature_names)

# 创建散点图矩阵
sns.pairplot(df)

# 显示图形
plt.show()

二、箱线图和小提琴图

箱线图是一种用于展示数据分布的统计图形,它可以显示数据的最大值、最小值、中位数、第一四分位数和第三四分位数。

小提琴图是箱线图的变体,除了显示与箱线图相同的统计信息外,还添加了 KDE(Kernel Density Estimation)曲线,使得我们可以看到数据的分布情况。

下面的例子展示了如何使用 Seaborn 创建箱线图和小提琴图:

# 创建箱线图
sns.boxplot(x="species", y="sepal length (cm)", data=df)

# 创建小提琴图
sns.violinplot(x="species", y="sepal length (cm)", data=df)

三、绘制多个子图

Seaborn 还提供了 FacetGrid 类,用于创建多个子图。FacetGrid 可以根据数据的一个或多个特性创建子图,使得我们可以在不同的子图中比较这些特性。

下面的例子展示了如何使用 FacetGrid 创建子图:

# 创建 FacetGrid
g = sns.FacetGrid(df, col="species")

# 在每个子图中绘制直方图
g.map(sns.histplot, "sepal length (cm)")

四、结论

在这篇文章中,我们进一步探讨了 Seaborn 的中级使用,包括如何创建散点图矩阵、箱线图、小提琴图,以及如何使用 FacetGrid 创建多个子图。这些工具都是 Seaborn 提供的强大功能,可以

相关文章
|
17天前
|
机器学习/深度学习 数据可视化 搜索推荐
基于python的汽车数据可视化、推荐及预测系统
本研究围绕汽车数据可视化、推荐及预测系统展开,结合大数据与人工智能技术,旨在提升用户体验与市场竞争力。内容涵盖研究背景、意义、相关技术如 Python、ECharts、协同过滤及随机森林回归等,探讨如何挖掘汽车数据价值,实现个性化推荐与智能预测,为汽车行业智能化发展提供支持。
|
7天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
22天前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
16天前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
26天前
|
搜索推荐 算法 数据可视化
基于python大数据的招聘数据可视化及推荐系统
本研究聚焦于基于协同过滤的就业推荐系统设计与实现。随着就业压力增大和信息技术发展,传统求职方式面临挑战。通过分析用户行为与职位特征,协同过滤技术可实现个性化职位推荐,提升求职与招聘效率。研究涵盖系统架构、数据采集、算法实现及可视化展示,旨在优化就业匹配,促进人才与岗位精准对接,助力就业市场智能化发展。
|
3月前
|
数据可视化 算法 数据挖掘
Python 3D数据可视化:7个实用案例助你快速上手
本文介绍了基于 Python Matplotlib 库的七种三维数据可视化技术,涵盖线性绘图、散点图、曲面图、线框图、等高线图、三角剖分及莫比乌斯带建模。通过具体代码示例和输出结果,展示了如何配置三维投影环境并实现复杂数据的空间表示。这些方法广泛应用于科学计算、数据分析与工程领域,帮助揭示多维数据中的空间关系与规律,为深入分析提供技术支持。
112 0
Python 3D数据可视化:7个实用案例助你快速上手
|
4月前
|
人工智能 数据可视化 数据挖掘
如何使用Python进行数据可视化
Python是一种强大的编程语言,广泛应用于数据分析与可视化。常见的可视化库有Matplotlib、Seaborn和Plotly等。数据可视化通常包括以下步骤:准备数据(如列表或从文件读取)、选择合适的工具、绘制图表、优化样式(如标题和标签)以及保存或分享结果。例如,使用Matplotlib可通过简单代码绘制线图并添加标题和轴标签。实际应用中,可通过调整颜色、样式等进一步优化图表,甚至使用交互式工具提升效果。总之,Python的丰富工具为数据可视化提供了强大支持。
159 5
|
9月前
|
数据可视化 数据挖掘 DataX
Python 数据可视化的完整指南
Python 数据可视化在数据分析和科学研究中至关重要,它能帮助我们理解数据、发现规律并以直观方式呈现复杂信息。Python 提供了丰富的可视化库,如 Matplotlib、Seaborn、Plotly 和 Pandas 的绘图功能,使得图表生成简单高效。本文通过具体代码示例和案例,介绍了折线图、柱状图、饼图、散点图、箱形图、热力图和小提琴图等常用图表类型,并讲解了自定义样式和高级技巧,帮助读者更好地掌握 Python 数据可视化工具的应用。
558 3
|
9月前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
284 8
|
9月前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
140 4

推荐镜像

更多