鲁棒优化入门(4)-两阶段鲁棒优化及行列生成算法(C&CG)超详细讲解

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介:         鲁棒优化是应对数据不确定性的一种优化方法,但单阶段鲁棒优化过于保守。为了解决这一问题,引入了两阶段鲁棒优化(Two-stage Robust Optimization)以及更一般的多阶段鲁棒优化,其核心思想是将决策问题分为两个阶段。第一阶段是进行初步决策,第二阶段是根据第一阶段的决策结果制定更好的决策策略,应对数据不确定性的影响。这种方法可以降低保守性,提高鲁棒性。

         本文的主要参考文献:

Zeng B , Zhao L . Solving Two-stage Robust Optimization Problems by A Constraint-and-Column Generation Method[J]. Operations Research Letters, 2013, 41(5):457-461.

1.两阶段鲁棒优化问题的引入

       鲁棒优化是应对数据不确定性的一种优化方法,但单阶段鲁棒优化过于保守。为了解决这一问题,引入了两阶段鲁棒优化(Two-stage Robust Optimization)以及更一般的多阶段鲁棒优化,其核心思想是将决策问题分为两个阶段。第一阶段是进行初步决策,第二阶段是根据第一阶段的决策结果制定更好的决策策略,应对数据不确定性的影响。这种方法可以降低保守性,提高鲁棒性。

       假设一阶段和二阶段决策问题都是线性规划,并且不确定性集合U是一个有限的离散集合或者多面体集。使用y表示第一阶段决策变量,x表示第二阶段决策变量,表示不确定矢量。在此假设下的两阶段鲁棒优化的一般形式为:

image.gif

其中:

image.gif

       向量c,b,d,h和矩阵A , G , E , M都是确定性的数值,不确定性体现在向量u上。注意到第二阶段优化的约束条件F(y,u)是关于不确定性u的线性函数。

       原文献中提供了以运输问题作为算例,具体如下:

image.gif

其中,yi为0-1变量,表示是否在i地建设仓库,zi表示仓库i储存的商品数量,xij表示从i仓库到j客户运送的商品数量,fi表示建设仓库i的固定成本,ai表示仓库i存储商品的单位成本,cij表示从i仓库到j客户运送单位商品的成本,ki表示仓库i的最大容量,dj表示客户j的需求。

       不确定变量为客户的需求,表达方式如下:

image.gif

       具体算例参数:

image.gif

       根据上面的公式,我们可以写出各个参数矩阵以及变量的表达式:

image.gif

       用matlab代码表示:

%% 参数矩阵
f = [400; 414; 326];
a = [18; 25; 20];
k = 800;
C = [22, 33, 24;
     33, 23, 30;
     20, 25, 27];
d_ = [206; 274; 220];
d_wave = 40;
gamma = [1.8,1.2];
P = [1 1;1 1;1 0];
%% 决策变量
y = binvar(3,1);
z = sdpvar(3,1);
x = sdpvar(3,3,’full’);
d = sdpvar(3,1);
g = sdpvar(3,1);

image.gif

       可以尝试求解一下这个确定性优化问题,和后面的两阶段鲁棒优化进行对比:

%% 目标函数
objective = f'*y + a'*z + sum(sum(C.*x));
%% 约束条件
Constraints = [];
Constraints = [Constraints , z >= 0 , x >= 0 , g >= 0 , g <= 1];
Constraints = [Constraints , z <= k*y];
Constraints=[Constraints , sum(x) <= z'];
Constraints=[Constraints ,sum(x,2) >= d];
Constraints=[Constraints ,d == d_ + g*d_wave];
Constraints=[Constraints ,g'*P <= gamma];
%% 设置求解器
ops=sdpsettings('verbose', 3, 'solver', 'gurobi');
sol=optimize(Constraints,objective,ops);

image.gif

       优化结果为:

image.gif

        进一步把算例写成两阶段鲁棒优化的形式:

image.gif

        针对这个两阶段鲁棒优化问题,可以分别采用Benders对偶割平面法和C&CG算法进行求解。

2.Benders对偶割平面法

2.1基本原理

       Benders对偶割平面法可以用于解决两阶段鲁棒优化问题,首先将两阶段鲁棒优化问题分解为两部分:主问题(Master Problem,MP)和子问题(Subproblem,SP)。主问题包含第一阶段的决策变量y以及仅与y有关的约束和子问题返回的割,还包括辅助变量η,用于评估第二阶段目标函数的取值。子问题包含第二阶段的决策变量x和不确定变量u,旨在给出第二阶段目标函数值的一个界限值。针对式(1)中描述的两阶段鲁棒优化问题,其主问题MP可以写成:

image.gif

       主问题是一个线性规划问题。子问题SP则为:

image.gif

       而子问题是一个双层线性规划问题(如果不知道双层规划的概念,可以去看看我之前的几篇博客双层优化入门-CSDN博客),其中上层优化的决策变量是u,下层优化的决策变量是x,而且在下层优化中,变量y和u的值都是确定的,可以视为参数。

       对于双层优化形式的子问题的求解,主要有以下几种方式:

       1.通过对偶变换将双层优化问题转为单层优化问题,再进行求解,可以使用智能优化算法、等价线性化、二次规划求解器(例如gurobi)等方式进行求解;

       2.采用智能优化算法进行求解(可参考博客双层优化入门(3)—基于智能优化算法的求解方法);

       3.采用KKT条件进行求解(可参考博客双层优化基本原理与求解方法基于yalmip的双层优化求解)。

       在这里我们使用KKT条件来求解子问题,可以将双层优化的子问题转换为下列单层优化的形式:

image.gif

        上面的约束存在非线性形式,可以使用大M法引入二进制中间变量进行线性化,将其转换为混合整数规划的形式:

image.gif

        对于一般形式的两阶段鲁棒优化问题(如式(1)),Benders对偶切平面算法求解的流程如下:

       步骤1:设定目标函数上界UB=+∞, 下界LB=-∞,迭代次数k=0。

步骤2:求解主问题MP

image.gif

求出最优解(yk+1*,ηk+1*),并更新LB=max{LB,c T yk+1*+ηk+1*};

步骤3:求解子问题SP:

image.gif

        求出子问题的最优目标函数值Qk+1*以及最优解(uk+1*,xk+1*),并更新UB=min{UB,cT yk *+Q(yk*)}。

       步骤4:如果UB-LB ≤ ε(事先设定的运行偏差),则输出优化结果,并退出循环。否则令k=k+1,将约束image.gif添加到主问题MP中并返回步骤2。

从上述步骤中可以看到,算法迭代的过程会不断向主问题添加约束条件image.gif,也就是割平面,因此被称为Benders对偶割平面法。

2.2 算例分析

       采用文献中给出的运输问题作为算例,使用matlab+yalmip工具箱+gurobi求解器进行求解。

image.gif

        为了求解这个两阶段鲁棒优化问题,我们首先需要把这个优化问题分解成主问题和子问题。而且为了方便理解,重写成符合标准两阶段鲁棒优化问题的形式,其中重写后的优化问题部分变量或系数矩阵和原优化问题中重复,我都加了上标一撇(‘)以示区别,具体步骤如下:

主问题MP_BD

image.gif

子问题SP_BD

image.gif

       步骤1:设定目标函数上界UB=+∞, 下界LB=-∞,迭代次数k=0。

       步骤2:求解主问题MP_BD,得到最优解(,),并更新LB=max{LB,};

       步骤3:求解子问题SP_BD,得到子问题的最优目标函数值Qk*以及最优解(uk*,xk*),并更新UB=min{UB,image.gif}。

       步骤4:如果UB-LB ≤ ε(事先设定的允许偏差),则输出优化结果,并退出循环。否则令k=k+1,将约束image.gif添加到主问题MP中并返回步骤2。

       采用matlab编程进行求解,结果如下:

image.gifimage.gifimage.gif

         与确定性优化的结果对比如下:

变量

确定性优化

两阶段鲁棒优化

最优目标函数值

30566

33680

y

[1 1 0]

[1 0 1]

z

[426 274 0]

[255.2 0 516.8]

x

g

[0 0 0]

[0 1 0.8]

d

[206 274 220]

[206 314 252]

3.列与约束生成算法(C&CG)

3.1 基本原理

       Benders对偶割平面法通过将两阶段鲁棒优化分解为主问题和子问题,不断交替求解,并将子问题的求解结果作为主问题增加的约束条件,以此达到迭代收敛的目的。C&CG算法和Benders对偶割平面法原理有一些相似,但也存在明显的差异,其基本原理如下:

       在C&CG算法的求解过程中,主问题中首先将不考虑不确定变量的影响,作为一个确定性优化进行求解。但不确定变量的最恶劣场景肯定会对主问题的决策产生影响,所以C&CG算法的本质思想就是在确定性优化求解的基础上,不断添加相对恶劣的场景以及对应的子问题决策变量和约束条件,从而使目标函数上界和下界不断得到改进,直到算法收敛,这种思想也被称为“追索权(recourse)”决策:在主问题不考虑不确定性的基础上,不断根据子问题决策带来的不确定性进行修正决策,来保证最终解的鲁棒性。

       根据C&CG算法的基本原理,我们可以想到,如果不确定集是一个离散的有限集,那么也可以通过枚举法来求解两阶段鲁棒优化问题。但实际情况肯定不会这么简单,还是需要通过C&CG算法交替迭代求解,具体步骤如下:

主问题MP_CCG

image.gif

其中,xl是第l次迭代添加的决策变量,image.gif是第l次迭代子问题的最恶劣场景,因为第l次迭代时子问题中已经求解了image.gif的值,所以在主问题中就可以看作已知的参数。

子问题SP_CCG

image.gif

        步骤1:设定目标函数上界UB=+∞, 下界LB=-∞,迭代次数k=0。

       步骤2:求解主问题MP_CCG,得到最优解image.gif,并更新LB=max{LB,image.gif};

       步骤3:求解子问题SP_CCG,得到子问题的最优目标函数值Qk*以及最优解(uk*,xk*),并更新UB=min{UB,image.gif}。

       步骤4:如果UB-LB ≤ ε(事先设定的允许偏差),则输出优化结果,并退出循环。否则转到步骤5.

       步骤5:判断子问题是否存在最优解。

       若Q(yk+1*)<+∞,即子问题存在最优解,则创建变量xk+1并给主问题MP_CCG添加以下约束:

image.gif

其中uk+1*是第k次迭代时子问题求解出来的最恶劣场景。

随后更新k= k+1,并转到步骤2。

       若Q(yk+1*)=+∞,即子问题不存在最优解,则创建变量xk+1并给主问题MP_CCG添加以下约束:

image.gif

随后更新k= k+1,并转到步骤2。

       从C&CG算法的步骤可以看到,在迭代的过程中在不断地向主问题添加决策变量以及约束条件,也就是优化问题的行和列都在增加,因此才被称为column-and-constraint generation (C&CG) 算法。

       原文献中解释了C&CG算法和Benders对偶割平面算法的区别,具体如下:

(1) 在主问题中,C&CG算法通过在每次迭代中引入一组新变量来增加解空间的维数,而Benders对偶割平面算法则使用相同的变量集合。

(2) 在处理可行性问题方面,C&CG算法提供了一种通用的方法,而Benders对偶割平面算法是针对特定问题的。

(3) 在计算复杂度方面,与Benders对偶割平面算法相比,C&CG算法在求解主问题时使用更多变量和约束条件。然而,若第二阶段的决策问题为LP问题,根据原文中的命题1和2,Benders对偶割平面算法的复杂度为O(pq),C&CG算法的复杂度将为O(p)(p是不确定集U的极值点数,q为满足GTπ≤b和π≥0的集合{π}中的极值点数量,具体见原文献中的描述)。因此C&CG算法的收敛速度要更快。

(4) 在求解问题的能力方面,Benders-dual对偶割平面算法需要将第二阶段的问题转换为线性规划问题,而C&CG算法不关心第二阶段的变量类型。如果第二阶段是混合整数规划,可以采用嵌套C&CG算法进行求解。

2.2 算例分析

       同样采用文献中给出的运输问题作为算例,使用matlab+yalmip工具箱+gurobi求解器进行求解。

image.gif

       和Benders-dual对偶割平面算法一样,我们首先需要把这个优化问题分解成主问题和子问题,并将优化问题重写成符合标准两阶段鲁棒优化问题的形式,具体步骤如下:

主问题MP_CCG

image.gif

子问题SP_BD

image.gif

       步骤1:设定目标函数上界UB=+∞, 下界LB=-∞,迭代次数k=0。

       步骤2:求解主问题MP_CCG,得到最优解image.gif,并更新LB=max{LB,image.gif};

       步骤3:求解子问题SP_CCG,得到子问题的最优目标函数值Qk*以及最优解(uk*,xk*),并更新UB=min{UB,image.gif}。

       步骤4:如果UB-LB ≤ ε(事先设定的允许偏差),则输出优化结果,并退出循环。否则转到步骤5.

       步骤5:判断子问题是否存在最优解。

       若Q(yk+1*)<+∞,即子问题存在最优解,则创建变量xk+1并给主问题MP_CCG添加以下约束:

image.gif

其中uk+1*是第k次迭代时子问题求解出来的最恶劣场景。随后更新k= k+1,并转到步骤2。

       若Q(yk+1*)=+∞,即子问题不存在最优解,则创建变量xk+1并给主问题MP_CCG添加以下约束:

image.gif

随后更新k= k+1,并转到步骤2。

运行结果如下,和Benders对偶割平面方法一样,但收敛速度更快:

image.gif

image.gif

image.gif



相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
6天前
|
存储 算法
【C算法】编程初学者入门训练140道(1~20)
【C算法】编程初学者入门训练140道(1~20)
|
12天前
|
机器学习/深度学习 人工智能 算法
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
本文全面介绍了人工智能(AI)的基础知识、操作教程、算法实现及其在实际项目中的应用。首先,从AI的概念出发,解释了AI如何使机器具备学习、思考、决策和交流的能力,并列举了日常生活中的常见应用场景,如手机助手、推荐系统、自动驾驶等。接着,详细介绍了AI在提高效率、增强用户体验、促进技术创新和解决复杂问题等方面的显著作用,同时展望了AI的未来发展趋势,包括自我学习能力的提升、人机协作的增强、伦理法规的完善以及行业垂直化应用的拓展等...
95 3
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
|
1天前
|
算法 语音技术
支付宝商业化广告算法问题之在ODL模型优化过程中,采取什么策略来提高模型的泛化能力呢
支付宝商业化广告算法问题之在ODL模型优化过程中,采取什么策略来提高模型的泛化能力呢
|
7天前
|
算法
基于多路径路由的全局感知网络流量分配优化算法matlab仿真
本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。
|
10天前
|
算法
PID算法原理分析及优化
今天为大家介绍一下经典控制算法之一的PID控制方法。PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。 在大学期间,参加的智能汽车竞赛中就使用到了PID经典控制算法,对于智能小车的调试更加的方便。 一、PID原理 PID控制方法将偏差的比例(proportional)、积分(integral)、微分(derivative)通过线性组合构成控制量,对被控对象进行控制。 常规的PID控制系统如图所示: 系统的输入r(t)为控制量的目标输出值,输出y(t)为控制量的实际输出值,e(t)为输出量目标值与实际值
24 1
|
19天前
|
机器学习/深度学习 算法 Python
探索机器学习中的梯度下降优化算法
【8月更文挑战第1天】在机器学习的广阔天地里,梯度下降法如同一位勇敢的探险家,指引我们穿越复杂的数学丛林,寻找模型参数的最优解。本文将深入探讨梯度下降法的核心原理,并通过Python代码示例,展示其在解决实际问题中的应用。
27 3
|
28天前
|
机器学习/深度学习 缓存 并行计算
操作系统调度算法的演变与优化
【7月更文挑战第23天】本文深入探讨了操作系统中调度算法的发展历程,从简单的先来先服务到复杂的多级反馈队列调度算法。通过分析不同算法的特点和性能表现,文章揭示了调度算法在提升系统响应速度、公平性以及资源利用率方面的重要性。同时,文章也讨论了现代操作系统如何通过优化调度算法来适应多核处理器架构,以及未来可能的研究方向。
|
6天前
|
算法 前端开发 计算机视觉
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
15 0
|
6天前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
5天前
|
机器学习/深度学习 算法 定位技术
MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
12 3

热门文章

最新文章