STM32F407硬件I2C实现MPU6050通讯(CUBEIDE)

简介: STM32F407硬件I2C实现MPU6050通讯(CUBEIDE)

工程代码

https://download.csdn.net/download/weixin_52849254/87886714

cubeide设置

I2C1通道可选择三种不同的通讯协议:I2C、SMBus-Alert-mode、SMBus-two-wire-Interface。

SMBus (System Management Bus,系统管理总线), 为系统和电源管理这样的任务提供了一条控制总线,SMBus与I2C总线之间在时序特性上存在一些差别

修改速度为50000

写操作与读操作函数实现

/**
  * @brief  Manages error callback by re-initializing I2C.
  * @param  Addr: I2C Address
  * @retval None
  */
static void I2Cx_Error(uint8_t Addr)
{
    /* 恢复I2C寄存器为默认值 */
    HAL_I2C_DeInit(&hi2c1);
    /* 重新初始化I2C外设 */
    MX_I2C1_Init();
}
/**
  * @brief  写寄存器,这是提供给上层的接口
    * @param  slave_addr: 从机地址
    * @param     reg_addr:寄存器地址
    * @param len:写入的长度
    *    @param data_ptr:指向要写入的数据
  * @retval 正常为0,不正常为非0
  */
int Sensors_I2C_WriteRegister(uint8_t slave_addr,
                                        uint8_t reg_addr,
                                        uint8_t len,
                                        uint8_t *data_ptr)
{
    HAL_StatusTypeDef status = HAL_OK;
    status = HAL_I2C_Mem_Write(&hi2c1, slave_addr, reg_addr, I2C_MEMADD_SIZE_8BIT,data_ptr, len,I2Cx_FLAG_TIMEOUT);
    /* 检查通讯状态 */
    if(status != HAL_OK)
    {
        /* 总线出错处理 */
        I2Cx_Error(slave_addr);
    }
    while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
    {
    }
    /* 检查SENSOR是否就绪进行下一次读写操作 */
    while (HAL_I2C_IsDeviceReady(&hi2c1, slave_addr, I2Cx_FLAG_TIMEOUT, I2Cx_FLAG_TIMEOUT) == HAL_TIMEOUT);
    /* 等待传输结束 */
    while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
    {
    }
    return status;
}
/**
  * @brief  读寄存器,这是提供给上层的接口
    * @param  slave_addr: 从机地址
    * @param     reg_addr:寄存器地址
    * @param len:要读取的长度
    *    @param data_ptr:指向要存储数据的指针
  * @retval 正常为0,不正常为非0
  */
int Sensors_I2C_ReadRegister(uint8_t slave_addr,
                                        uint8_t reg_addr,
                                        uint8_t len,
                                        uint8_t *data_ptr)
{
    HAL_StatusTypeDef status = HAL_OK;
    status =HAL_I2C_Mem_Read(&hi2c1,slave_addr,reg_addr,I2C_MEMADD_SIZE_8BIT,data_ptr,len,I2Cx_FLAG_TIMEOUT);
    /* 检查通讯状态 */
    if(status != HAL_OK)
    {
        /* 总线出错处理 */
        I2Cx_Error(slave_addr);
    }
    while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
    {
    }
    /* 检查SENSOR是否就绪进行下一次读写操作 */
    while (HAL_I2C_IsDeviceReady(&hi2c1, slave_addr, I2Cx_FLAG_TIMEOUT, I2Cx_FLAG_TIMEOUT) == HAL_TIMEOUT);
    /* 等待传输结束 */
    while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
    {
    }
    return status;
}

这段代码是关于使用I2C进行寄存器读写的函数实现。

首先,代码中定义了一个静态函数I2Cx_Error,用于处理I2C出错的情况。在函数中,首先通过调用HAL_I2C_DeInit函数将I2C寄存器恢复为默认值,然后调用MX_I2C1_Init函数重新初始化I2C外设。

接下来,代码包含了两个函数Sensors_I2C_WriteRegister和Sensors_I2C_ReadRegister,分别用于写寄存器和读寄存器操作。

Sensors_I2C_WriteRegister函数用于向从设备写入数据。它接受从设备地址(slave_addr)、寄存器地址(reg_addr)、要写入的数据长度(len)和指向要写入数据的指针(data_ptr)作为参数。在函数中,通过调用HAL_I2C_Mem_Write函数进行I2C的内存写操作。如果通信状态不正常,即status不等于HAL_OK,则调用I2Cx_Error函数进行错误处理。然后,通过循环等待I2C传输完成,并检查SENSOR是否就绪进行下一次读写操作。

Sensors_I2C_ReadRegister函数用于从从设备读取数据。它接受从设备地址(slave_addr)、寄存器地址(reg_addr)、要读取的数据长度(len)和指向存储数据的指针(data_ptr)作为参数。在函数中,通过调用HAL_I2C_Mem_Read函数进行I2C的内存读操作。如果通信状态不正常,即status不等于HAL_OK,则调用I2Cx_Error函数进行错误处理。然后,通过循环等待I2C传输完成,并检查SENSOR是否就绪进行下一次读写操作。

最后,函数返回status表示操作的状态。

综上所述,这段代码实现了使用I2C进行寄存器读写的功能,并在通信出错时进行了错误处理。

复位,读取温度,角度等函数封装

mpu6050.c

#include "mpu6050.h"
#include "usart.h"
#include "i2c.h"
#include "main.h"
#define MPU_ERROR         I2C_ERROR
#define MPU_INFO         I2C_INFO
/**
  * @brief   写数据到MPU6050寄存器
  * @param   reg_add:寄存器地址
    * @param     reg_data:要写入的数据
  * @retval  
  */
void MPU6050_WriteReg(uint8_t reg_add,uint8_t reg_dat)
{
    Sensors_I2C_WriteRegister(MPU6050_ADDRESS,reg_add,1,&reg_dat);
}
/**
  * @brief   从MPU6050寄存器读取数据
  * @param   reg_add:寄存器地址
    * @param     Read:存储数据的缓冲区
    * @param     num:要读取的数据量
  * @retval  
  */
void MPU6050_ReadData(uint8_t reg_add,unsigned char* Read,uint8_t num)
{
    Sensors_I2C_ReadRegister(MPU6050_ADDRESS,reg_add,num,Read);
}
/**
 * @brief       往MPU6050的指定寄存器写入一字节数据
 * @param       addr: MPU6050的IIC通讯地址
 *              reg : MPU6050寄存器地址
 *              dat : 写入的数据
 * @retval      MPU6050_EOK : 函数执行成功
 *              MPU6050_EACK: IIC通讯ACK错误,函数执行失败
 */
uint8_t mpu6050_write_byte(uint8_t addr, uint8_t reg, uint8_t dat)
{
    return Sensors_I2C_WriteRegister(addr, reg, 1, &dat);
}
/**
 * @brief       读取MPU6050指定寄存器的值
 * @param       addr: MPU6050的IIC通讯地址
 *              reg : MPU6050寄存器地址
 *              dat: 读取到的寄存器的值
 * @retval      MPU6050_EOK : 函数执行成功
 *              MPU6050_EACK: IIC通讯ACK错误,函数执行失败
 */
uint8_t mpu6050_read_byte(uint8_t addr, uint8_t reg, uint8_t *dat)
{
    return Sensors_I2C_ReadRegister(addr, reg, 1, dat);
}
/**
  * @brief   初始化MPU6050芯片
  * @param   
  * @retval  
  */
void MPU6050_Init(void)
{
    //在初始化之前要延时一段时间,若没有延时,则断电后再上电数据可能会出错
    Delay(100);
    MPU6050_WriteReg(MPU6050_RA_PWR_MGMT_1, 0x00);         //解除休眠状态
    MPU6050_WriteReg(MPU6050_RA_SMPLRT_DIV , 0x07);        //陀螺仪采样率
    MPU6050_WriteReg(MPU6050_RA_CONFIG , 0x06);    
    MPU6050_WriteReg(MPU6050_RA_ACCEL_CONFIG , 0x01);      //配置加速度传感器工作在4G模式
    MPU6050_WriteReg(MPU6050_RA_GYRO_CONFIG, 0x18);     //陀螺仪自检及测量范围,典型值:0x18(不自检,2000deg/s)
    Delay(200);
}
/**
  * @brief   读取MPU6050的ID
  * @param   
  * @retval  正常返回1,异常返回0
  */
uint8_t MPU6050ReadID(void)
{
    unsigned char Re = 0;
    MPU6050_ReadData(MPU6050_RA_WHO_AM_I,&Re,1);    //读器件地址
    printf("Re = %x\r\n",Re);
    if(Re != 0x68)
    {
        MPU_ERROR("MPU6050 dectected error!\r\n检测不到MPU6050模块,请检查模块与开发板的接线");
        return 0;
    }
    else
    {
        MPU_INFO("MPU6050 ID = %d\r\n",Re);
        return 1;
    }
}
/**
  * @brief   读取MPU6050的加速度数据
  * @param   
  * @retval  
  */
void MPU6050ReadAcc(short *accData)
{
    uint8_t buf[6];
    MPU6050_ReadData(MPU6050_ACC_OUT, buf, 6);
    accData[0] = (buf[0] << 8) | buf[1];
    accData[1] = (buf[2] << 8) | buf[3];
    accData[2] = (buf[4] << 8) | buf[5];
}
/**
  * @brief   读取MPU6050的角加速度数据
  * @param   
  * @retval  
  */
void MPU6050ReadGyro(short *gyroData)
{
    uint8_t buf[6];
    MPU6050_ReadData(MPU6050_GYRO_OUT,buf,6);
    gyroData[0] = (buf[0] << 8) | buf[1];
    gyroData[1] = (buf[2] << 8) | buf[3];
    gyroData[2] = (buf[4] << 8) | buf[5];
}
/**
  * @brief   读取MPU6050的原始温度数据
  * @param   
  * @retval  
  */
void MPU6050ReadTemp(short *tempData)
{
    uint8_t buf[2];
    MPU6050_ReadData(MPU6050_RA_GYRO_XOUT_H,buf,2);     //读取温度值
    *tempData = (buf[0] << 8) | buf[1];
}
/**
  * @brief   读取MPU6050的温度数据,转化成摄氏度
  * @param   
  * @retval  
  */
void MPU6050_ReturnTemp(float *Temperature)
{
    short temp3;
    uint8_t buf[2];
    MPU6050_ReadData(MPU6050_RA_GYRO_XOUT_H,buf,2);     //读取温度值
    temp3= (buf[0] << 8) | buf[1];    
    *Temperature=((double) temp3/340.0)+36.53;
}
/**
 * @brief       MPU6050软件复位
 * @param       无
 * @retval      无
 */
void mpu6050_sw_reset(void)
{
    mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x80);
    HAL_Delay(100);
    mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x00);
}
/**
 * @brief       MPU6050设置陀螺仪传感器量程范围
 * @param       frs: 0 --> ±250dps
 *                   1 --> ±500dps
 *                   2 --> ±1000dps
 *                   3 --> ±2000dps
 * @retval      MPU6050_EOK : 函数执行成功
 *              MPU6050_EACK: IIC通讯ACK错误,函数执行失败
 */
uint8_t mpu6050_set_gyro_fsr(uint8_t fsr)
{
    return mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_GYRO_CONFIG, fsr << 3);
}
/**
 * @brief       MPU6050设置加速度传感器量程范围
 * @param       frs: 0 --> ±2g
 *                   1 --> ±4g
 *                   2 --> ±8g
 *                   3 --> ±16g
 * @retval      MPU6050_EOK : 函数执行成功
 *              MPU6050_EACK: IIC通讯ACK错误,函数执行失败
 */
uint8_t mpu6050_set_accel_fsr(uint8_t fsr)
{
    return mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_ACCEL_CONFIG, fsr << 3);
}
/**
 * @brief       MPU6050设置数字低通滤波器频率
 * @param       lpf: 数字低通滤波器的频率(Hz)
 * @retval      MPU6050_EOK : 函数执行成功
 *              MPU6050_EACK: IIC通讯ACK错误,函数执行失败
 */
uint8_t mpu6050_set_lpf(uint16_t lpf)
{
    uint8_t dat;
    if (lpf >= 188)
    {
        dat = 1;
    }
    else if (lpf >= 98)
    {
        dat = 2;
    }
    else if (lpf >= 42)
    {
        dat = 3;
    }
    else if (lpf >= 20)
    {
        dat = 4;
    }
    else if (lpf >= 10)
    {
        dat = 5;
    }
    else
    {
        dat = 6;
    }
    return mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_CONFIG, dat);
}
/**
 * @brief       MPU6050设置采样率
 * @param       rate: 采样率(4~1000Hz)
 * @retval      MPU6050_EOK : 函数执行成功
 *              MPU6050_EACK: IIC通讯ACK错误,函数执行失败
 */
uint8_t mpu6050_set_rate(uint16_t rate)
{
    uint8_t ret;
    uint8_t dat;
    if (rate > 1000)
    {
        rate = 1000;
    }
    if (rate < 4)
    {
        rate = 4;
    }
    dat = 1000 / rate - 1;
    ret = mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_SMPLRT_DIV, dat);
    if (ret != MPU6050_EOK)
    {
        return ret;
    }
    ret = mpu6050_set_lpf(rate >> 1);
    if (ret != MPU6050_EOK)
    {
        return ret;
    }
    return MPU6050_EOK;
}
/**
 * @brief       MPU6050获取温度值
 * @param       temperature: 获取到的温度值(扩大了100倍)
 * @retval      MPU6050_EOK : 函数执行成功
 *              MPU6050_EACK: IIC通讯ACK错误,函数执行失败
 */
uint8_t mpu6050_get_temperature(int16_t *temp)
{
    uint8_t dat[2];
    uint8_t ret;
    int16_t raw = 0;
    ret = Sensors_I2C_ReadRegister(MPU6050_ADDRESS, MPU6050_RA_TEMP_OUT_H, 2, dat);
    if (ret == MPU6050_EOK)
    {
        raw = ((uint16_t)dat[0] << 8) | dat[1];
        *temp = (int16_t)((36.53f + ((float)raw / 340)) * 100);
    }
    return ret;
}
/**
 * @brief       MPU6050获取陀螺仪值
 * @param       gx,gy,gz: 陀螺仪x、y、z轴的原始度数(带符号)
 * @retval      MPU6050_EOK : 函数执行成功
 *              MPU6050_EACK: IIC通讯ACK错误,函数执行失败
 */
uint8_t mpu6050_get_gyroscope(int16_t *gx, int16_t *gy, int16_t *gz)
{
    uint8_t dat[6];
    uint8_t ret;
    ret =  Sensors_I2C_ReadRegister(MPU6050_ADDRESS, MPU6050_RA_GYRO_XOUT_H, 6, dat);
    if (ret == MPU6050_EOK)
    {
        *gx = ((uint16_t)dat[0] << 8) | dat[1];
        *gy = ((uint16_t)dat[2] << 8) | dat[3];
        *gz = ((uint16_t)dat[4] << 8) | dat[5];
    }
    return ret;
}
/**
 * @brief       MPU6050获取加速度值
 * @param       ax,ay,az: 加速度x、y、z轴的原始度数(带符号)
 * @retval      MPU6050_EOK : 函数执行成功
 *              MPU6050_EACK: IIC通讯ACK错误,函数执行失败
 */
uint8_t mpu6050_get_accelerometer(int16_t *ax, int16_t *ay, int16_t *az)
{
    uint8_t dat[6];
    uint8_t ret;
    ret =  Sensors_I2C_ReadRegister(MPU6050_ADDRESS, MPU6050_RA_ACCEL_XOUT_H, 6, dat);
    if (ret == MPU6050_EOK)
    {
        *ax = ((uint16_t)dat[0] << 8) | dat[1];
        *ay = ((uint16_t)dat[2] << 8) | dat[3];
        *az = ((uint16_t)dat[4] << 8) | dat[5];
    }
    return ret;
}
/**
 * @brief       MPU6050初始化
 * @param       无
 * @retval      MPU6050_EOK: 函数执行成功
 *              MPU6050_EID: 获取ID错误,函数执行失败
 */
uint8_t mpu6050_init(void)
{
    uint8_t id;
//    mpu6050_hw_init();                                                   /* MPU6050硬件初始化 */
//    mpu6050_iic_init();                                                  /* 初始化IIC接口 */
    mpu6050_sw_reset();                                                  /* MPU6050软件复位 */
    mpu6050_set_gyro_fsr(3);                                             /* 陀螺仪传感器,±2000dps */
    mpu6050_set_accel_fsr(0);                                            /* 加速度传感器,±2g */
    mpu6050_set_rate(50);                                                /* 采样率,50Hz */
    mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_INT_ENABLE, 0X00);       /* 关闭所有中断 */
    mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_USER_CTRL, 0X00);    /* 关闭IIC主模式 */
    mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_FIFO_EN, 0X00);      /* 关闭FIFO */
    mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_INT_PIN_CFG, 0X80);    /* INT引脚低电平有效 */
    mpu6050_read_byte(MPU6050_ADDRESS, MPU6050_WHO_AM_I, &id);      /* 读取设备ID */
    printf("id = %d\r\n",id);
    if (id != 0x68)
    {
        return MPU6050_EID;
    }
    mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x01);    /* 设置CLKSEL,PLL X轴为参考 */
    mpu6050_write_byte(MPU6050_ADDRESS, MPU6050_RA_PWR_MGMT_2, 0x00);    /* 加速度与陀螺仪都工作 */
    mpu6050_set_rate(50);                                                /* 采样率,50Hz */
    return MPU6050_EOK;
}

mpu6050.h

#ifndef __MPU6050_H
#define __MPU6050_H
#include "main.h"
// MPU6050, Standard address 0x68
#define MPU6050_ADDRESS         0xD0
//
#define MPU6050_WHO_AM_I        0x75
#define MPU6050_SMPLRT_DIV      0  //8000Hz
#define MPU6050_DLPF_CFG        0
#define MPU6050_GYRO_OUT        0x43     //MPU6050陀螺仪数据寄存器地址
#define MPU6050_ACC_OUT         0x3B     //MPU6050加速度数据寄存器地址
#define MPU6050_RA_XG_OFFS_TC       0x00 //[7] PWR_MODE, [6:1] XG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_YG_OFFS_TC       0x01 //[7] PWR_MODE, [6:1] YG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_ZG_OFFS_TC       0x02 //[7] PWR_MODE, [6:1] ZG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_X_FINE_GAIN      0x03 //[7:0] X_FINE_GAIN
#define MPU6050_RA_Y_FINE_GAIN      0x04 //[7:0] Y_FINE_GAIN
#define MPU6050_RA_Z_FINE_GAIN      0x05 //[7:0] Z_FINE_GAIN
#define MPU6050_RA_XA_OFFS_H        0x06 //[15:0] XA_OFFS
#define MPU6050_RA_XA_OFFS_L_TC     0x07
#define MPU6050_RA_YA_OFFS_H        0x08 //[15:0] YA_OFFS
#define MPU6050_RA_YA_OFFS_L_TC     0x09
#define MPU6050_RA_ZA_OFFS_H        0x0A //[15:0] ZA_OFFS
#define MPU6050_RA_ZA_OFFS_L_TC     0x0B
#define MPU6050_RA_XG_OFFS_USRH     0x13 //[15:0] XG_OFFS_USR
#define MPU6050_RA_XG_OFFS_USRL     0x14
#define MPU6050_RA_YG_OFFS_USRH     0x15 //[15:0] YG_OFFS_USR
#define MPU6050_RA_YG_OFFS_USRL     0x16
#define MPU6050_RA_ZG_OFFS_USRH     0x17 //[15:0] ZG_OFFS_USR
#define MPU6050_RA_ZG_OFFS_USRL     0x18
#define MPU6050_RA_SMPLRT_DIV       0x19        // 采样频率分频器
#define MPU6050_RA_CONFIG           0x1A         // 配置寄存器
#define MPU6050_RA_GYRO_CONFIG      0x1B        // 陀螺仪配置寄存器
#define MPU6050_RA_ACCEL_CONFIG     0x1C        // 加速度计配置寄存器
#define MPU6050_RA_FF_THR           0x1D
#define MPU6050_RA_FF_DUR           0x1E
#define MPU6050_RA_MOT_THR          0x1F    // 运动检测阀值设置寄存器
#define MPU6050_RA_MOT_DUR          0x20
#define MPU6050_RA_ZRMOT_THR        0x21
#define MPU6050_RA_ZRMOT_DUR        0x22
#define MPU6050_RA_FIFO_EN          0x23    // FIFO使能寄存器
#define MPU6050_RA_I2C_MST_CTRL     0x24
#define MPU6050_RA_I2C_SLV0_ADDR    0x25
#define MPU6050_RA_I2C_SLV0_REG     0x26
#define MPU6050_RA_I2C_SLV0_CTRL    0x27
#define MPU6050_RA_I2C_SLV1_ADDR    0x28
#define MPU6050_RA_I2C_SLV1_REG     0x29
#define MPU6050_RA_I2C_SLV1_CTRL    0x2A
#define MPU6050_RA_I2C_SLV2_ADDR    0x2B
#define MPU6050_RA_I2C_SLV2_REG     0x2C
#define MPU6050_RA_I2C_SLV2_CTRL    0x2D
#define MPU6050_RA_I2C_SLV3_ADDR    0x2E
#define MPU6050_RA_I2C_SLV3_REG     0x2F
#define MPU6050_RA_I2C_SLV3_CTRL    0x30
#define MPU6050_RA_I2C_SLV4_ADDR    0x31
#define MPU6050_RA_I2C_SLV4_REG     0x32
#define MPU6050_RA_I2C_SLV4_DO      0x33
#define MPU6050_RA_I2C_SLV4_CTRL    0x34
#define MPU6050_RA_I2C_SLV4_DI      0x35
#define MPU6050_RA_I2C_MST_STATUS   0x36
#define MPU6050_RA_INT_PIN_CFG      0x37    // 中断/旁路设置寄存器
#define MPU6050_RA_INT_ENABLE       0x38    // 中断使能寄存器
#define MPU6050_RA_DMP_INT_STATUS   0x39
#define MPU6050_RA_INT_STATUS       0x3A
#define MPU6050_RA_ACCEL_XOUT_H     0x3B     // 加速度值,X轴高8位寄存器
#define MPU6050_RA_ACCEL_XOUT_L     0x3C
#define MPU6050_RA_ACCEL_YOUT_H     0x3D
#define MPU6050_RA_ACCEL_YOUT_L     0x3E
#define MPU6050_RA_ACCEL_ZOUT_H     0x3F
#define MPU6050_RA_ACCEL_ZOUT_L     0x40
#define MPU6050_RA_TEMP_OUT_H       0x41    // 温度值高八位寄存器
#define MPU6050_RA_TEMP_OUT_L       0x42
#define MPU6050_RA_GYRO_XOUT_H      0x43    // 陀螺仪值,X轴高8位寄存器
#define MPU6050_RA_GYRO_XOUT_L      0x44
#define MPU6050_RA_GYRO_YOUT_H      0x45
#define MPU6050_RA_GYRO_YOUT_L      0x46
#define MPU6050_RA_GYRO_ZOUT_H      0x47
#define MPU6050_RA_GYRO_ZOUT_L      0x48
#define MPU6050_RA_EXT_SENS_DATA_00 0x49
#define MPU6050_RA_EXT_SENS_DATA_01 0x4A
#define MPU6050_RA_EXT_SENS_DATA_02 0x4B
#define MPU6050_RA_EXT_SENS_DATA_03 0x4C
#define MPU6050_RA_EXT_SENS_DATA_04 0x4D
#define MPU6050_RA_EXT_SENS_DATA_05 0x4E
#define MPU6050_RA_EXT_SENS_DATA_06 0x4F
#define MPU6050_RA_EXT_SENS_DATA_07 0x50
#define MPU6050_RA_EXT_SENS_DATA_08 0x51
#define MPU6050_RA_EXT_SENS_DATA_09 0x52
#define MPU6050_RA_EXT_SENS_DATA_10 0x53
#define MPU6050_RA_EXT_SENS_DATA_11 0x54
#define MPU6050_RA_EXT_SENS_DATA_12 0x55
#define MPU6050_RA_EXT_SENS_DATA_13 0x56
#define MPU6050_RA_EXT_SENS_DATA_14 0x57
#define MPU6050_RA_EXT_SENS_DATA_15 0x58
#define MPU6050_RA_EXT_SENS_DATA_16 0x59
#define MPU6050_RA_EXT_SENS_DATA_17 0x5A
#define MPU6050_RA_EXT_SENS_DATA_18 0x5B
#define MPU6050_RA_EXT_SENS_DATA_19 0x5C
#define MPU6050_RA_EXT_SENS_DATA_20 0x5D
#define MPU6050_RA_EXT_SENS_DATA_21 0x5E
#define MPU6050_RA_EXT_SENS_DATA_22 0x5F
#define MPU6050_RA_EXT_SENS_DATA_23 0x60
#define MPU6050_RA_MOT_DETECT_STATUS    0x61
#define MPU6050_RA_I2C_SLV0_DO      0x63
#define MPU6050_RA_I2C_SLV1_DO      0x64
#define MPU6050_RA_I2C_SLV2_DO      0x65
#define MPU6050_RA_I2C_SLV3_DO      0x66
#define MPU6050_RA_I2C_MST_DELAY_CTRL   0x67
#define MPU6050_RA_SIGNAL_PATH_RESET    0x68
#define MPU6050_RA_MOT_DETECT_CTRL      0x69
#define MPU6050_RA_USER_CTRL        0x6A    // 用户控制寄存器
#define MPU6050_RA_PWR_MGMT_1       0x6B    // 电源管理寄存器1
#define MPU6050_RA_PWR_MGMT_2       0x6C    // 电源管理寄存器2
#define MPU6050_RA_BANK_SEL         0x6D
#define MPU6050_RA_MEM_START_ADDR   0x6E
#define MPU6050_RA_MEM_R_W          0x6F
#define MPU6050_RA_DMP_CFG_1        0x70
#define MPU6050_RA_DMP_CFG_2        0x71
#define MPU6050_RA_FIFO_COUNTH      0x72
#define MPU6050_RA_FIFO_COUNTL      0x73
#define MPU6050_RA_FIFO_R_W         0x74
#define MPU6050_RA_WHO_AM_I         0x75    // 器件ID寄存器
#define MPU6050_TC_PWR_MODE_BIT     7
#define MPU6050_TC_OFFSET_BIT       6
#define MPU6050_TC_OFFSET_LENGTH    6
#define MPU6050_TC_OTP_BNK_VLD_BIT  0
#define MPU6050_VDDIO_LEVEL_VLOGIC  0
#define MPU6050_VDDIO_LEVEL_VDD     1
#define MPU6050_CFG_EXT_SYNC_SET_BIT    5
#define MPU6050_CFG_EXT_SYNC_SET_LENGTH 3
#define MPU6050_CFG_DLPF_CFG_BIT    2
#define MPU6050_CFG_DLPF_CFG_LENGTH 3
#define MPU6050_EXT_SYNC_DISABLED       0x0
#define MPU6050_EXT_SYNC_TEMP_OUT_L     0x1
#define MPU6050_EXT_SYNC_GYRO_XOUT_L    0x2
#define MPU6050_EXT_SYNC_GYRO_YOUT_L    0x3
#define MPU6050_EXT_SYNC_GYRO_ZOUT_L    0x4
#define MPU6050_EXT_SYNC_ACCEL_XOUT_L   0x5
#define MPU6050_EXT_SYNC_ACCEL_YOUT_L   0x6
#define MPU6050_EXT_SYNC_ACCEL_ZOUT_L   0x7
#define MPU6050_DLPF_BW_256         0x00
#define MPU6050_DLPF_BW_188         0x01
#define MPU6050_DLPF_BW_98          0x02
#define MPU6050_DLPF_BW_42          0x03
#define MPU6050_DLPF_BW_20          0x04
#define MPU6050_DLPF_BW_10          0x05
#define MPU6050_DLPF_BW_5           0x06
#define MPU6050_GCONFIG_FS_SEL_BIT      4
#define MPU6050_GCONFIG_FS_SEL_LENGTH   2
#define MPU6050_GYRO_FS_250         0x00
#define MPU6050_GYRO_FS_500         0x01
#define MPU6050_GYRO_FS_1000        0x02
#define MPU6050_GYRO_FS_2000        0x03
#define MPU6050_ACONFIG_XA_ST_BIT           7
#define MPU6050_ACONFIG_YA_ST_BIT           6
#define MPU6050_ACONFIG_ZA_ST_BIT           5
#define MPU6050_ACONFIG_AFS_SEL_BIT         4
#define MPU6050_ACONFIG_AFS_SEL_LENGTH      2
#define MPU6050_ACONFIG_ACCEL_HPF_BIT       2
#define MPU6050_ACONFIG_ACCEL_HPF_LENGTH    3
#define MPU6050_ACCEL_FS_2          0x00
#define MPU6050_ACCEL_FS_4          0x01
#define MPU6050_ACCEL_FS_8          0x02
#define MPU6050_ACCEL_FS_16         0x03
#define MPU6050_DHPF_RESET          0x00
#define MPU6050_DHPF_5              0x01
#define MPU6050_DHPF_2P5            0x02
#define MPU6050_DHPF_1P25           0x03
#define MPU6050_DHPF_0P63           0x04
#define MPU6050_DHPF_HOLD           0x07
#define MPU6050_TEMP_FIFO_EN_BIT    7
#define MPU6050_XG_FIFO_EN_BIT      6
#define MPU6050_YG_FIFO_EN_BIT      5
#define MPU6050_ZG_FIFO_EN_BIT      4
#define MPU6050_ACCEL_FIFO_EN_BIT   3
#define MPU6050_SLV2_FIFO_EN_BIT    2
#define MPU6050_SLV1_FIFO_EN_BIT    1
#define MPU6050_SLV0_FIFO_EN_BIT    0
#define MPU6050_MULT_MST_EN_BIT     7
#define MPU6050_WAIT_FOR_ES_BIT     6
#define MPU6050_SLV_3_FIFO_EN_BIT   5
#define MPU6050_I2C_MST_P_NSR_BIT   4
#define MPU6050_I2C_MST_CLK_BIT     3
#define MPU6050_I2C_MST_CLK_LENGTH  4
#define MPU6050_CLOCK_DIV_348       0x0
#define MPU6050_CLOCK_DIV_333       0x1
#define MPU6050_CLOCK_DIV_320       0x2
#define MPU6050_CLOCK_DIV_308       0x3
#define MPU6050_CLOCK_DIV_296       0x4
#define MPU6050_CLOCK_DIV_286       0x5
#define MPU6050_CLOCK_DIV_276       0x6
#define MPU6050_CLOCK_DIV_267       0x7
#define MPU6050_CLOCK_DIV_258       0x8
#define MPU6050_CLOCK_DIV_500       0x9
#define MPU6050_CLOCK_DIV_471       0xA
#define MPU6050_CLOCK_DIV_444       0xB
#define MPU6050_CLOCK_DIV_421       0xC
#define MPU6050_CLOCK_DIV_400       0xD
#define MPU6050_CLOCK_DIV_381       0xE
#define MPU6050_CLOCK_DIV_364       0xF
#define MPU6050_I2C_SLV_RW_BIT      7
#define MPU6050_I2C_SLV_ADDR_BIT    6
#define MPU6050_I2C_SLV_ADDR_LENGTH 7
#define MPU6050_I2C_SLV_EN_BIT      7
#define MPU6050_I2C_SLV_BYTE_SW_BIT 6
#define MPU6050_I2C_SLV_REG_DIS_BIT 5
#define MPU6050_I2C_SLV_GRP_BIT     4
#define MPU6050_I2C_SLV_LEN_BIT     3
#define MPU6050_I2C_SLV_LEN_LENGTH  4
#define MPU6050_I2C_SLV4_RW_BIT         7
#define MPU6050_I2C_SLV4_ADDR_BIT       6
#define MPU6050_I2C_SLV4_ADDR_LENGTH    7
#define MPU6050_I2C_SLV4_EN_BIT         7
#define MPU6050_I2C_SLV4_INT_EN_BIT     6
#define MPU6050_I2C_SLV4_REG_DIS_BIT    5
#define MPU6050_I2C_SLV4_MST_DLY_BIT    4
#define MPU6050_I2C_SLV4_MST_DLY_LENGTH 5
#define MPU6050_MST_PASS_THROUGH_BIT    7
#define MPU6050_MST_I2C_SLV4_DONE_BIT   6
#define MPU6050_MST_I2C_LOST_ARB_BIT    5
#define MPU6050_MST_I2C_SLV4_NACK_BIT   4
#define MPU6050_MST_I2C_SLV3_NACK_BIT   3
#define MPU6050_MST_I2C_SLV2_NACK_BIT   2
#define MPU6050_MST_I2C_SLV1_NACK_BIT   1
#define MPU6050_MST_I2C_SLV0_NACK_BIT   0
#define MPU6050_INTCFG_INT_LEVEL_BIT        7
#define MPU6050_INTCFG_INT_OPEN_BIT         6
#define MPU6050_INTCFG_LATCH_INT_EN_BIT     5
#define MPU6050_INTCFG_INT_RD_CLEAR_BIT     4
#define MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT  3
#define MPU6050_INTCFG_FSYNC_INT_EN_BIT     2
#define MPU6050_INTCFG_I2C_BYPASS_EN_BIT    1
#define MPU6050_INTCFG_CLKOUT_EN_BIT        0
#define MPU6050_INTMODE_ACTIVEHIGH  0x00
#define MPU6050_INTMODE_ACTIVELOW   0x01
#define MPU6050_INTDRV_PUSHPULL     0x00
#define MPU6050_INTDRV_OPENDRAIN    0x01
#define MPU6050_INTLATCH_50USPULSE  0x00
#define MPU6050_INTLATCH_WAITCLEAR  0x01
#define MPU6050_INTCLEAR_STATUSREAD 0x00
#define MPU6050_INTCLEAR_ANYREAD    0x01
#define MPU6050_INTERRUPT_FF_BIT            7
#define MPU6050_INTERRUPT_MOT_BIT           6
#define MPU6050_INTERRUPT_ZMOT_BIT          5
#define MPU6050_INTERRUPT_FIFO_OFLOW_BIT    4
#define MPU6050_INTERRUPT_I2C_MST_INT_BIT   3
#define MPU6050_INTERRUPT_PLL_RDY_INT_BIT   2
#define MPU6050_INTERRUPT_DMP_INT_BIT       1
#define MPU6050_INTERRUPT_DATA_RDY_BIT      0
// TODO: figure out what these actually do
// UMPL source code is not very obivous
#define MPU6050_DMPINT_5_BIT            5
#define MPU6050_DMPINT_4_BIT            4
#define MPU6050_DMPINT_3_BIT            3
#define MPU6050_DMPINT_2_BIT            2
#define MPU6050_DMPINT_1_BIT            1
#define MPU6050_DMPINT_0_BIT            0
#define MPU6050_MOTION_MOT_XNEG_BIT     7
#define MPU6050_MOTION_MOT_XPOS_BIT     6
#define MPU6050_MOTION_MOT_YNEG_BIT     5
#define MPU6050_MOTION_MOT_YPOS_BIT     4
#define MPU6050_MOTION_MOT_ZNEG_BIT     3
#define MPU6050_MOTION_MOT_ZPOS_BIT     2
#define MPU6050_MOTION_MOT_ZRMOT_BIT    0
#define MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT   7
#define MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT   4
#define MPU6050_DELAYCTRL_I2C_SLV3_DLY_EN_BIT   3
#define MPU6050_DELAYCTRL_I2C_SLV2_DLY_EN_BIT   2
#define MPU6050_DELAYCTRL_I2C_SLV1_DLY_EN_BIT   1
#define MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT   0
#define MPU6050_PATHRESET_GYRO_RESET_BIT    2
#define MPU6050_PATHRESET_ACCEL_RESET_BIT   1
#define MPU6050_PATHRESET_TEMP_RESET_BIT    0
#define MPU6050_DETECT_ACCEL_ON_DELAY_BIT       5
#define MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH    2
#define MPU6050_DETECT_FF_COUNT_BIT             3
#define MPU6050_DETECT_FF_COUNT_LENGTH          2
#define MPU6050_DETECT_MOT_COUNT_BIT            1
#define MPU6050_DETECT_MOT_COUNT_LENGTH         2
#define MPU6050_DETECT_DECREMENT_RESET  0x0
#define MPU6050_DETECT_DECREMENT_1      0x1
#define MPU6050_DETECT_DECREMENT_2      0x2
#define MPU6050_DETECT_DECREMENT_4      0x3
#define MPU6050_USERCTRL_DMP_EN_BIT             7
#define MPU6050_USERCTRL_FIFO_EN_BIT            6
#define MPU6050_USERCTRL_I2C_MST_EN_BIT         5
#define MPU6050_USERCTRL_I2C_IF_DIS_BIT         4
#define MPU6050_USERCTRL_DMP_RESET_BIT          3
#define MPU6050_USERCTRL_FIFO_RESET_BIT         2
#define MPU6050_USERCTRL_I2C_MST_RESET_BIT      1
#define MPU6050_USERCTRL_SIG_COND_RESET_BIT     0
#define MPU6050_PWR1_DEVICE_RESET_BIT   7
#define MPU6050_PWR1_SLEEP_BIT          6
#define MPU6050_PWR1_CYCLE_BIT          5
#define MPU6050_PWR1_TEMP_DIS_BIT       3
#define MPU6050_PWR1_CLKSEL_BIT         2
#define MPU6050_PWR1_CLKSEL_LENGTH      3
#define MPU6050_CLOCK_INTERNAL          0x00
#define MPU6050_CLOCK_PLL_XGYRO         0x01
#define MPU6050_CLOCK_PLL_YGYRO         0x02
#define MPU6050_CLOCK_PLL_ZGYRO         0x03
#define MPU6050_CLOCK_PLL_EXT32K        0x04
#define MPU6050_CLOCK_PLL_EXT19M        0x05
#define MPU6050_CLOCK_KEEP_RESET        0x07
#define MPU6050_PWR2_LP_WAKE_CTRL_BIT       7
#define MPU6050_PWR2_LP_WAKE_CTRL_LENGTH    2
#define MPU6050_PWR2_STBY_XA_BIT            5
#define MPU6050_PWR2_STBY_YA_BIT            4
#define MPU6050_PWR2_STBY_ZA_BIT            3
#define MPU6050_PWR2_STBY_XG_BIT            2
#define MPU6050_PWR2_STBY_YG_BIT            1
#define MPU6050_PWR2_STBY_ZG_BIT            0
#define MPU6050_WAKE_FREQ_1P25      0x0
#define MPU6050_WAKE_FREQ_2P5       0x1
#define MPU6050_WAKE_FREQ_5         0x2
#define MPU6050_WAKE_FREQ_10        0x3
#define MPU6050_BANKSEL_PRFTCH_EN_BIT       6
#define MPU6050_BANKSEL_CFG_USER_BANK_BIT   5
#define MPU6050_BANKSEL_MEM_SEL_BIT         4
#define MPU6050_BANKSEL_MEM_SEL_LENGTH      5
#define MPU6050_WHO_AM_I_BIT        6
#define MPU6050_WHO_AM_I_LENGTH     6
#define MPU6050_DMP_MEMORY_BANKS        8
#define MPU6050_DMP_MEMORY_BANK_SIZE    256
#define MPU6050_DMP_MEMORY_CHUNK_SIZE   16
void MPU6050ReadTemp(short *tempData);
void MPU6050ReadGyro(short *gyroData);
void MPU6050ReadAcc(short *accData);
void MPU6050_ReturnTemp(float*Temperature);
void MPU6050_Init(void);
uint8_t MPU6050ReadID(void);
void MPU6050_WriteReg(uint8_t reg_add,uint8_t reg_dat);
void MPU6050_ReadData(uint8_t reg_add,unsigned char* Read,uint8_t num);
void MPU6050_PWR_MGMT_1_INIT(void);
/* 操作函数 */
uint8_t mpu6050_write(uint8_t addr, uint8_t reg, uint8_t len, uint8_t *dat); /* 往ATK-MS6050的指定寄存器连续写入指定数据 */
uint8_t mpu6050_write_byte(uint8_t addr, uint8_t reg, uint8_t dat);          /* 往ATK-MS6050的指定寄存器写入一字节数据 */
uint8_t mpu6050_read(uint8_t addr, uint8_t reg, uint8_t len, uint8_t *dat);  /* 连续读取ATK-MS6050指定寄存器的值 */
uint8_t mpu6050_read_byte(uint8_t addr, uint8_t reg, uint8_t *dat);          /* 读取ATK-MS6050指定寄存器的值 */
void mpu6050_sw_reset(void);                                                 /* ATK-MS6050软件复位 */
uint8_t mpu6050_set_gyro_fsr(uint8_t fsr);                                   /* ATK-MS6050设置陀螺仪传感器量程范围 */
uint8_t mpu6050_set_accel_fsr(uint8_t fsr);                                  /* ATK-MS6050设置加速度传感器量程范围 */
uint8_t mpu6050_set_lpf(uint16_t lpf);                                       /* ATK-MS6050设置数字低通滤波器频率 */
uint8_t mpu6050_set_rate(uint16_t rate);                                     /* ATK-MS6050设置采样率 */
uint8_t mpu6050_get_temperature(int16_t *temp);                              /* ATK-MS6050获取温度值 */
uint8_t mpu6050_get_gyroscope(int16_t *gx, int16_t *gy, int16_t *gz);        /* ATK-MS6050获取陀螺仪值 */
uint8_t mpu6050_get_accelerometer(int16_t *ax, int16_t *ay, int16_t *az);    /* ATK-MS6050获取加速度值 */
uint8_t mpu6050_init(void);
/* 函数错误代码 */
#define MPU6050_EOK      0   /* 没有错误 */
#define MPU6050_EID      1   /* ID错误 */
#define MPU6050_EACK     2   /* IIC通讯ACK错误 */
#endif  /*__MPU6050*/

代码分析

主要涉及与MPU6050传感器通信和配置相关的函数。以下是对每个函数的简要说明:

MPU6050_WriteReg(uint8_t reg_add,uint8_t reg_dat): 将数据写入MPU6050寄存器的函数。

MPU6050_ReadData(uint8_t reg_add,unsigned char* Read,uint8_t num): 从MPU6050寄存器读取数据的函数。

mpu6050_write_byte(uint8_t addr, uint8_t reg, uint8_t dat): 向MPU6050指定寄存器写入一字节数据的函数。

mpu6050_read_byte(uint8_t addr, uint8_t reg, uint8_t *dat): 读取MPU6050指定寄存器的值的函数。

MPU6050_Init(void): 初始化MPU6050芯片的函数,包括解除休眠状态和配置传感器参数等。

MPU6050ReadID(void): 读取MPU6050的ID,并检查是否能够正确识别MPU6050模块。

MPU6050ReadAcc(short *accData): 读取MPU6050的加速度数据。

MPU6050ReadGyro(short *gyroData): 读取MPU6050的角加速度数据。

MPU6050ReadTemp(short *tempData): 读取MPU6050的原始温度数据。

MPU6050_ReturnTemp(float *Temperature): 将读取到的温度数据转化为摄氏度。

mpu6050_sw_reset(void): 执行MPU6050的软件复位操作。

mpu6050_set_gyro_fsr(uint8_t fsr): 设置MPU6050陀螺仪传感器的量程范围。

mpu6050_set_accel_fsr(uint8_t fsr): 设置MPU6050加速度传感器的量程范围。

mpu6050_set_lpf(uint16_t lpf): 设置MPU6050的数字低通滤波器频率。

mpu6050_set_rate(uint16_t rate): 设置MPU6050的采样率。

mpu6050_get_temperature(int16_t *temp): 获取MPU6050的温度值。

mpu6050_get_gyroscope(int16_t *gx, int16_t *gy, int16_t *gz): 获取MPU6050的陀螺仪值。

mpu6050_get_accelerometer(int16_t *ax, int16_t *ay, int16_t *az): 获取MPU6050的加速度值。

mpu6050_init(void): 对MPU6050进行初始化的函数。

这些函数可以用于控制和读取MPU6050传感器的数据。请确保正确连接MPU6050模块,并在代码中适当调用这些函数来实现您的应用逻

DMP移植

先获取到移植所需的文件,我使用的文件来自正点原子陀螺仪资料,见文件添加进工程,再进行自己mcu的适配修改

1.修改头文件路径为自己的头文件路径

inv_mpu.c

修改

inv_mpu_dmp_motion_driver.c

修改

2.修改I2C读写函数为自己mcu平台的读写函数

inv_mpu.c

修改为

3.修改延时函数为自己平台的延时函数

inv_mpu.c

修改为

inv_mpu_dmp_motion_driver.c

修改

4.修改MPU6050的地址

mpu6050.h

修改MPU6050地址为0XD0

inv_mpu.c

修改MPU6050地址为0XD0

软件I2C读取时不需要修改这个地址

使用举例

/* 初始化MPU6050 */
    PRINT_LOG("<<File:%s  Line:%d  Function:%s>>\r\n ", __FILE__, __LINE__, __FUNCTION__);
       int ret = 0;
    float pit, rol, yaw;
    int16_t acc_x, acc_y, acc_z;
    int16_t gyr_x, gyr_y, gyr_z;
    int16_t temp;
    ret = 1;
    ret = mpu6050_init();
    if (ret != 0)
    {
        PRINT_LOG("<<File:%s  Line:%d  Function:%s>>\r\n ", __FILE__, __LINE__, __FUNCTION__);
        printf("MPU6050 init failed!\r\n");
    }
    ret = 1;
    while(ret){
    /* 初始化MPU6050 DMP */
    ret = mpu6050_dmp_init();
    if (ret != 0)
    {
        printf("MPU6050 DMP init failed!\r\n");
    }
    }
    while (1)
    {
        /* 获取MPU6050 DMP处理后的数据 */
        ret  = mpu6050_dmp_get_data(&pit, &rol, &yaw);
        /* 获取MPU6050加速度值 */
        ret += mpu6050_get_accelerometer(&acc_x, &acc_y, &acc_z);
        /* 获取MPU6050陀螺仪值 */
        ret += mpu6050_get_gyroscope(&gyr_x, &gyr_y, &gyr_z);
        /* 获取MPU6050温度值 */
        ret += mpu6050_get_temperature(&temp);
                /* 上传相关数据信息至串口调试助手 */
                printf("pit: %.2f, rol: %.2f, yaw: %.2f,\r\n ", pit, rol, yaw);
                printf("acc_x: %d, acc_y: %d, acc_z: %d, \r\n", acc_x, acc_y, acc_z);
                printf("gyr_x: %d, gyr_y: %d, gyr_z: %d, \r\n", gyr_x, gyr_y, gyr_z);
                printf("temp: %d\r\n", temp);
                ret  = mpu6050_dmp_get_data(&pit, &rol, &yaw);
                printf("pit: %.2f, rol: %.2f, yaw: %.2f,\r\n ", pit, rol, yaw);
            HAL_Delay(5000);
//            mpu6050_init();
//            mpu6050_dmp_init();
    }

这段代码初始化了MPU6050传感器,并使用DMP(数字运动处理)模块获取传感器的姿态数据(俯仰、横滚和偏航),加速度数据,陀螺仪数据和温度数据。然后,它通过串口调试助手打印这些数据。在主循环中,代码等待5秒钟后重复获取和打印数据。

请注意,上述代码可能需要根据您的具体硬件配置和要求进行修改和适应。确保正确连接MPU6050模块,并根据您的需求进行必要的初始化和配置。


相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
云原生实践公开课
课程大纲 开篇:如何学习并实践云原生技术 基础篇: 5 步上手 Kubernetes 进阶篇:生产环境下的 K8s 实践 相关的阿里云产品:容器服务&nbsp;ACK 容器服务&nbsp;Kubernetes&nbsp;版(简称&nbsp;ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情:&nbsp;https://www.aliyun.com/product/kubernetes
目录
相关文章
|
29天前
|
传感器 算法
【STM32】I2C练习,HAL库读取MPU6050角度陀螺仪
【STM32】I2C练习,HAL库读取MPU6050角度陀螺仪
|
10月前
|
传感器
STM32F407软件模拟I2C实现MPU6050通讯(CUBEIDE)(下)
STM32F407软件模拟I2C实现MPU6050通讯(CUBEIDE)(下)
224 0
|
2月前
|
传感器 存储 缓存
STM32--MPU6050与I2C外设
STM32--MPU6050与I2C外设
|
2月前
|
传感器
STM32F103的I2C工作原理
STM32F103的I2C工作原理
22 0
|
4月前
|
芯片
STM32之软件模拟“I2C”时序
STM32之软件模拟“I2C”时序
|
8月前
|
存储 内存技术
STM32F0单片机快速入门九 用 I2C HAL 库读写24C02
STM32F0单片机快速入门九 用 I2C HAL 库读写24C02
|
10月前
STM32F407软件模拟I2C实现MPU6050通讯(CUBEIDE)(上)
STM32F407软件模拟I2C实现MPU6050通讯(CUBEIDE)
122 0
|
传感器 C语言 芯片
【STM32】I2C协议完成温湿度检测
I2C总线是英国的菲利普公司在八十年代初期退出来的一种串行的、半双工的总线,主要是用于一些近距离、低速的芯片之间的通信;I2C总线有两根双向的信号线,一根SDA用于收发数据、一根时钟线SCL用于通信双方时钟的同步。
【STM32】I2C协议完成温湿度检测
|
29天前
【STM32】基于HAL库的360度编码器、摇杆代码编写
【STM32】基于HAL库的360度编码器、摇杆代码编写
|
3月前
|
C++ 芯片 编译器
STM32F103标准外设库—— 新建工程与库函数(四)
STM32F103标准外设库—— 新建工程与库函数(四)
44 0
STM32F103标准外设库—— 新建工程与库函数(四)