遗传算法(GA)优化后RBF神经网络优化分析(Matlab代码实现)

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 遗传算法(GA)优化后RBF神经网络优化分析(Matlab代码实现)

目录


1 遗传算法


2 RBF神经网络


3 Matlab代码实现


4 结果


1 遗传算法

遗传算法是一种基于生物进化原理的优化算法,常用于解决复杂的问题。它的工作原理基于模拟自然选择和遗传机制。


遗传算法的步骤如下:


1. 初始化种群:随机生成初始种群,每个个体都代表一个可能的解决方案。


2. 适应度评估:根据问题的特定评估函数,对每个个体进行评估,衡量其解决问题的效果。


3. 选择操作:根据适应度评估结果,选择一部分个体作为父代。


4. 交叉操作:通过交换父代个体的某些特征,生成新的子代个体。


5. 变异操作:对子代个体进行随机变异,以保持种群的多样性。


6. 替换操作:用子代替换部分父代,形成新的种群。


7. 重复执行步骤2到步骤6,直到满足终止条件(达到最大迭代次数、达到期望解或达到时间限制)。


通过迭代执行以上步骤,遗传算法能够逐渐搜索出更好的解决方案。它适用于各种优化问题,例如组合优化、参数优化、机器学习等。遗传算法具有全局搜索能力和对多个优化目标的适应性,但也具有计算复杂度高的缺点。因此,在应用遗传算法时需要根据具体问题权衡利弊。


2 RBF神经网络

RBF神将网络是一种三层神经网络,其包括输入层、隐层、输出层。从输入空间到隐层空间的变换是非线性的,而从隐层空间到输出层空间变换是线性的。流图如下:


6b274465128e2aa35c2acc6b23710732.png


RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。其中,隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想。


这样,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。


3 Matlab代码实现

GA.m

clear all
close all
G = 15;
Size = 30;
CodeL = 10;
for i = 1:3
    MinX(i) = 0.1*ones(1);
    MaxX(i) = 3*ones(1);
end
for i = 4:1:9
    MinX(i) = -3*ones(1);
    MaxX(i) = 3*ones(1);
end
for i = 10:1:12
    MinX(i) = -ones(1);
    MaxX(i) = ones(1);
end
E = round(rand(Size,12*CodeL));  %Initial Code!
BsJ = 0;
for kg = 1:1:G
    time(kg) = kg
    for s = 1:1:Size
        m = E(s,:);
        for j = 1:1:12
            y(j) = 0;
            mj = m((j-1)*CodeL + 1:1:j*CodeL);
            for i = 1:1:CodeL
                y(j) = y(j) + mj(i)*2^(i-1);
            end
            f(s,j) = (MaxX(j) - MinX(j))*y(j)/1023 + MinX(j);
        end
        % ************Step 1:Evaluate BestJ *******************
        p = f(s,:);
        [p,BsJ] = RBF(p,BsJ);
        BsJi(s) = BsJ;
    end
    [OderJi,IndexJi] = sort(BsJi);
    BestJ(kg) = OderJi(1);
    BJ = BestJ(kg);
    Ji = BsJi+1e-10;
    fi = 1./Ji;
    [Oderfi,Indexfi] = sort(fi);
    Bestfi = Oderfi(Size);
    BestS = E(Indexfi(Size),:);
    % ***************Step 2:Select and Reproduct Operation*********
    fi_sum = sum(fi);
    fi_Size = (Oderfi/fi_sum)*Size;
    fi_S = floor(fi_Size);
    kk = 1;
    for i = 1:1:Size
        for j = 1:1:fi_S(i)
            TempE(kk,:) = E(Indexfi(i),:);
            kk = kk + 1;
        end
    end
    % ****************Step 3:Crossover Operation*******************
    pc = 0.60;
    n = ceil(20*rand);
    for i = 1:2:(Size - 1)
        temp = rand;
        if pc>temp
            for j = n:1:20
                TempE(i,j) = E(i+1,j);
                TempE(i+1,j) = E(i,j);
            end
        end
    end
        TempE(Size,:) = BestS;
        E = TempE;
     %*****************Step 4:Mutation Operation*********************
     pm = 0.001 - [1:1:Size]*(0.001)/Size;
     for i = 1:1:Size
         for j = 1:1:12*CodeL
             temp = rand;
             if pm>temp
                 if TempE(i,j) == 0
                     TempE(i,j) = 1;
                 else
                     TempE(i,j) = 0;
                 end
             end
         end
     end
     %Guarantee TempE(Size,:) belong to the best individual
     TempE(Size,:) = BestS;
     E = TempE;
     %********************************************************************
 end
 Bestfi
 BestS
 fi
 Best_J = BestJ(G)
 figure(1);
 plot(time,BestJ);
 xlabel('Times');ylabel('BestJ');
 save pfile p;


RBF.m

function [p,BsJ] = RBF(p,BsJ)
ts = 0.001;
alfa = 0.05;
xite = 0.85;
x = [0,0]';
b = [p(1);p(2);p(3)];
c = [p(4) p(5) p(6);
    p(7) p(8) p(9)];
w = [p(10);p(11);p(12)];
w_1 = w;w_2 = w_1;
c_1 = c;c_2 = c_1;
b_1 = b;b_2 = b_1;
y_1 = 0;
for k = 1:500
    timef(k) = k*ts;
    u(k) = sin(5*2*pi*k*ts);
    y(k) = u(k)^3 + y_1/(1 + y_1^2);
    x(1) = u(k);
    x(2) = y(k);
    for j = 1:1:3
        h(j) = exp(-norm(x - c(:,j))^2/(2*b(j)*b(j)));
    end
    ym(k) = w_1'*h';
    e(k) = y(k) - ym(k);
    d_w = 0*w;d_b = 0*b;d_c = 0*c;
    for j = 1:1:3
        d_w(j) = xite*e(k)*h(j);
        d_b(j) = xite*e(k)*w(j)*h(j)*(b(j)^-3)*norm(x-c(:,j))^2;
        for i = 1:1:2
            d_c(i,j) = xite*e(k)*w(j)*h(j)*(x(i)-c(i,j))*(b(j)^-2);
        end
    end
    w = w_1 + d_w + alfa*(w_1 - w_2);
    b = b_1 + d_b + alfa*(b_1 - b_2);
    c = c_1 + d_c + alfa*(c_1 - c_2);
    y_1 = y(k);
    w_2 = w_1;
    w_1 = w;
    c_2 = c_1;
    c_1 = c;
    b_2 = b_1;
    b_1 = b;
end
B = 0;
for i = 1:500
    Ji(i) = abs(e(i));
    B = B + 100*Ji(i);
end
BsJ = B;


Test.m

clear all;
close all;
load pfile;
alfa = 0.05;
xite = 0.85;
x = [0,0]';
%M为1时
M = 2;
if M == 1
    b = [p(1);p(2);p(3)];
    c = [p(4) p(5) p(6);
         p(7) p(8) p(9)];
    w = [p(10);p(11);p(12)];
elseif M == 2
    b = 3*rand(3,1);
    c = 3*rands(2,3);
    w = rands(3,1);
end
w_1 = w;w_2 = w_1;
c_1 = c;c_2 = c_1;
b_1 = b;b_2 = b_1;
y_1 = 0;
ts = 0.001;
for k = 1:1500
    time(k) = k*ts;
    u(k) = sin(5*2*pi*k*ts);
    y(k) = u(k)^3 + y_1/(1 + y_1^2);
    x(1) = u(k);
    x(2) = y(k);
    for j = 1:3
        h(j) = exp(-norm(x-c(:,j))^2/(2*b(j)*b(j)));
    end
    ym(k) = w_1'*h';
    e(k) = y(k) - ym(k);
    d_w = 0*w;d_b = 0*b;d_c=0*c;
    for j = 1:1:3
        d_w(j) = xite*e(k)*h(j);
        d_b(j) = xite*e(k)*w(j)*h(j)*(b(j)^-3)*norm(x-c(:,j))^2;
        for i = 1:1:2
            d_c(i,j) = xite*e(k)*w(j)*h(j)*(x(i) - c(i,j))*(b(j)^-2);
        end
    end
    w = w_1 + d_w + alfa*(w_1 - w_2);
    b = b_1 + d_b + alfa*(b_1 - b_2);
    c = c_1 + d_c + alfa*(c_1 - c_2);
    y_1 = y(k);
    w_2 = w_1;
    w_1 = w;
    c_2 = c_1;
    c_1 = c;
    b_2 = b;
end
figure(1);
plot(time,ym,'r',time,y,'b');
xlabel('times(s)');ylabel('y and ym');


pfile.mat



p: [2.9915 2.9008 2.4982 1.0059 1.1056 0.8006 0.4780 1.6100 -1.3460 -0.7204 0.4076 0.2786]


4 结果




相关文章
|
17天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
76 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
18天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
20天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
90 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
17天前
|
存储 监控 算法
局域网网络管控里 Node.js 红黑树算法的绝妙运用
在数字化办公中,局域网网络管控至关重要。红黑树作为一种自平衡二叉搜索树,凭借其高效的数据管理和平衡机制,在局域网设备状态管理中大放异彩。通过Node.js实现红黑树算法,可快速插入、查找和更新设备信息(如IP地址、带宽等),确保网络管理员实时监控和优化网络资源,提升局域网的稳定性和安全性。未来,随着技术融合,红黑树将在网络管控中持续进化,助力构建高效、安全的局域网络生态。
40 9
|
23天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
26天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
24天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
20天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
27天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
106 11
|
1月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
212 15

热门文章

最新文章