C#实现一个万物皆可排序的队列1

简介: C#实现一个万物皆可排序的队列1

需求

产品中需要向不同的客户推送数据,原来的实现是每条数据产生后就立即向客户推送数据,走的的是HTTP协议。因为每条数据都比较小,而数据生成的频次也比较高,这就会频繁的建立HTTP连接,而且每次HTTP传输中携带的业务数据都很小,对网络的实际利用率不高。希望能够提高网络的利用率,并降低系统的负载。

分析

一个很自然的想法就是将多条数据一起发送,这里有几个关键点:

1、多条数据的聚合逻辑: 是攒够几条发送,还是按照时间周期发送。如果是攒够几条发送,在数据比较稀疏或者产生频率不那么稳定的时候,攒够需要的数据条数可能比较困难,这时候还得需要一个过期时间,因为客户可能接受不了太多的延迟。既然不管怎样都需要使用时间进行控制,我这里索性就选择按照时间周期发送了。思路是:自上次发送时间起,经过了某个时长之后,就发送客户在这段时间内产生的所有数据。

2、数据到期判断方法: 既然选择了按照时间周期发送,那么就必须有办法判断是否到了发送时间。一个很简单的想法就是轮询,把所有客户轮询一遍,看看谁的数据到期了,就发送谁的。这个算法的时间复杂度是O(N),如果客户比较多,就会消耗过多的时间在这上边。还有一个办法:如果客户按照时间排序好了,那么只需要取时间最早的客户的数据时间判断就好了,满足就发送,一直向后找,直到获取的客户数据时间不符合条件,则退出处理,然后等一会再进行判断处理。这就需要有一个支持排序的数据结构,写入数据时自动排序,这种数据结构的时间复杂度一般可以做到O(log(n))。对于这个数据结构的读写操作原理上就是队列的操作方式,只不过是个可排序的队列。

3、区分客户: 不同客户的数据接收地址不同,向具体某个客户发送数据时,应该能比较方便的聚合他的数据,最好是直接就能拿到需要发送的数据。可以使用字典数据结构来满足这个需求,取某个客户数据的时间复杂度可以降低到O(1)。

4、数据的安全性问题: 如果程序在数据发送成功之前退出了,未发送的数据怎么办?是还能继续发送,还是就丢掉不管了。如果要在程序重启后恢复未发送成功的数据,则必须将数据同步到别的地方,比如持久化到磁盘。因为我这里的数据安全性要求不高,丢失一些数据也是允许的,所以要发送的数据收到之后放到内存就行了。

实现

上文提到可排序的数据结构,可以使用SortedList<TKey,TValue>,键是时间,值是这个时间产生了数据的客户标识列表。不过它的读写操作不是线程安全的,需要自己做同步,这里简单点就使用lock了。

对于不同客户的数据,为了方便获取,使用Dictionary<TKey,TValue>来满足,键是客户的标识,值是累积的未发送客户数据。这个数据读写也不是线程安全的,可以和SortedList的读写放到同一个lock中。

下边是它们的定义:

SortedList<DateTime, List<TKey>> _queue = new SortedList<DateTime, List<TKey>>();
Dictionary<TKey, List<TValue>> _data = new Dictionary<TKey, List<TValue>>();
readonly object _lock = new object();

插入数据的时候,需要先写入SortedList,然后再写入Dictionary。代码逻辑比较简单,请看:

    public void Publish(TKey key, TValue value)
    {
        DateTime now = DateTime.Now;
        lock (_lock)
        {
            if (_queue.TryGetValue(now, out List<TKey>? keys))
            {
                if (!keys!.Contains(key))
                {
                    keys.Add(key);
                }
            }
            else
            {
                _queue.Add(now, new List<TKey> { key });
            }
            if (_data.TryGetValue(key, out List<TValue>? values))
            {
                values.Add(value);
            }
            else
            {
                _data.Add(key, new List<TValue> { value });
            }
        }
    }

对于消费数据,这里采用拉数据的模式。最开始写的方法逻辑是:读取一条数据,处理它,然后从队列中删除。但是这个逻辑需要对队列进行读写,所以必须加锁。一般处理数据比较耗时,比如这里要通过HTTP发送数据,加锁的话就可能导致写数据到队列时阻塞的时间比较长。所以这里实现的是把可以发送的数据全部提取出来,然后就释放锁,数据的处理放到锁的外部实现,这样队列的读写性能就比较好了。

    public List<(TKey key, List<TValue> value)> Pull(int maxNumberOfMessages)
    {
        List<(TKey, List<TValue>)> result = new List<(TKey, List<TValue>)>();
        DateTime now = DateTime.Now;
        lock (_lock)
        {
            int messageCount = 0;
            while (true)
            {
                if (!_queue.Any())
                {
                    break;
                }
                var first = _queue.First();
                var diffMillseconds = now.Subtract(first.Key).TotalMilliseconds;
                if (diffMillseconds < _valueDequeueMillseconds)
                {
                    break;
                }
                var keys = first.Value;
                foreach (var key in keys)
                {
                    if (_data.TryGetValue(key, out List<TValue>? keyValues))
                    {
                        result.Add((key, keyValues));
                        _data.Remove(key);
                        messageCount += keyValues!.Count;
                    }
                }
                _queue.RemoveAt(0);
                if (messageCount >= maxNumberOfMessages)
                {
                    break;
                }
            }
        }
        return result;
    }

这段代码比较长一些,我梳理下逻辑:取队列的第一条数据,判断时间是否达到发送周期,未达到则直接退出,方法返回空列表。如果达到发送周期,则取出第一条数据中存储的客户标识,然后根据这些标识获取对应的客户未发送数据,将这些数据按照客户维度添加到返回列表中,将这些客户及其数据从队列中移除,返回有数据的列表。这里还增加了一个拉取数据的条数限制,方便根据业务实际情况进行控制。

再来看一下怎么使用这个队列,这里模拟多个生产者加一个消费者,其实可以任意多个生产者和消费者:

TimeSortedQueue<string, string> queue = new TimeSortedQueue<string, string>(3000);
List<Task> publishTasks = new List<Task>();
for (int i = 0; i < 4; i++)
{
    var j = i;
    publishTasks.Add(Task.Factory.StartNew(() =>
    {
        int k = 0;
        while (true)
        {
            queue.Publish($"key_{k}", $"value_{j}_{k}");
            Thread.Sleep(15);
            k++;
        }
    }, TaskCreationOptions.LongRunning));
}
Task.Factory.StartNew(() =>
{
    while (true)
    {
        var list = queue.Pull(100);
        if (list.Count <= 0)
        {
            Thread.Sleep(100);
            continue;
        }
        foreach (var item in list)
        {
            Console.WriteLine($"{DateTime.Now.ToString("mmss.fff")}:{item.key}, {string.Join(",", item.value)}");
        }
    }
}, TaskCreationOptions.LongRunning);
Task.WaitAll(publishTasks.ToArray());

以上就是针对这个特定需求实现的一个按照时间进行排序的队列。

相关文章
|
7月前
|
开发框架 .NET C#
C#学习相关系列之Linq常用方法---排序(一)
C#学习相关系列之Linq常用方法---排序(一)
|
7月前
|
C#
C#中sort排序相关用法介绍
C#中sort排序相关用法介绍
|
C#
c#集合去重&排序常用方法
list和数组转Hashset跟SortedSet进行排序和去重,以及当Hashset和SortedSet存放的是类时如何进行自定义的排序和去重
98 2
|
消息中间件 存储 NoSQL
C#实现一个万物皆可排序的队列2
C#实现一个万物皆可排序的队列2
95 0
|
SQL 存储 开发框架
C#——List排序
C#——List排序
161 0
C#编程-74:dataGridView排序和筛选
C#编程-74:dataGridView排序和筛选
400 0
|
算法 搜索推荐 C#
【愚公系列】2021年11月 C#版 数据结构与算法解析(二叉树排序)
【愚公系列】2021年11月 C#版 数据结构与算法解析(二叉树排序)
118 0
【愚公系列】2021年11月 C#版 数据结构与算法解析(二叉树排序)
|
算法 C#
【愚公系列】2021年11月 C#版 数据结构与算法解析(交换排序-快速排序)
【愚公系列】2021年11月 C#版 数据结构与算法解析(交换排序-快速排序)
112 0
【愚公系列】2021年11月 C#版 数据结构与算法解析(交换排序-快速排序)
|
算法 搜索推荐 C#
【愚公系列】2021年11月 C#版 数据结构与算法解析(交换排序-冒泡排序)
【愚公系列】2021年11月 C#版 数据结构与算法解析(交换排序-冒泡排序)
113 0
【愚公系列】2021年11月 C#版 数据结构与算法解析(交换排序-冒泡排序)