go-micro使用Consul做服务发现的方法和原理

简介: go-micro使用Consul做服务发现的方法和原理

go-micro v4默认使用mdns做服务发现。不过也支持采用其它的服务发现中间件,因为多年来一直使用Consul做服务发现,为了方便和其它服务集成,所以还是选择了Consul。这篇文章将介绍go-micro使用Consul做服务发现的方法。关于Consul的使用方式请参考我的另一篇文章:使用Consul做服务发现的若干姿势


安装Consul


如果你已经安装Consul,或者对Consul很熟悉了,按照自己的方式处理Consul就行了。

这里提供一个通过docker快速安装Consul的方式,当然前提是你得安装了docker。

执行命令:

docker run --name consul1 -p 8500:8500 -p 8300:8300 -p 8301:8301 -p 8302:8302  -d consul:latest

这会在docker容器中启动一个最新版本的Consul服务,并将相关端口开放给主机。


安装Consul插件


使用Consul作为服务注册和服务发现,需要先安装go-micro的consul插件:

go get github.com/go-micro/plugins/v4/registry/consul


服务端使用Consul


服务注册


为了使用Consul做服务注册,需要为go-micro server显式的指定Consul Registry。直接看代码吧:

func main() {
  registry := consul.NewRegistry()
  rpcServer := server.NewServer(
    server.Name("registry-consul.service"),
    server.Address("0.0.0.0:8001"),
    server.Registry(registry),
  )
  proto.RegisterHelloHandler(rpcServer, &Hello{})
  service := micro.NewService(
    micro.Server(rpcServer),
  )
  service.Init()
  // Run server
  if err := service.Run(); err != nil {
    log.Fatal(err)
  }
}

通过 consul.NewRegistry() 创建一个Consul 注册中心,然后使用 server.NewServer 创建Server的时候把它设置进去;同时我们需要指定服务的名称,这里设置的是 registry-consul.service;另外这里不使用随机端口,指定了一个服务的监听地址。这样基本就OK了。

1689144376622.png

这里并没有指定Consul的连接地址,因为按照推荐的Consul部署方式,服务所在机器或者容器中应该部署一个Consul的客户端,程序可以直接通过 127.0.0.1:8500 访问到它。如果要显示指定,可以在NewRegistry时设置:

  registry := consul.NewRegistry(
    registry.Addrs("127.0.0.1:8500"),
  )

注册过程


通过一张图来看一下,go-micro注册服务到Consul时都做了什么。

1689144447374.png

服务注册关键是实现两个动作:

1、注册: rpcServer启动的时候,会调用到自身的Register方法,Register方法会调用consul插件的Register方法,然后调用到consul自身SDK提供的Agent.ServiceRegister方法,将服务注册到Consul中。注册的服务名称就是NewServer时的server.Name。

2、健康上报: 即刷新TTL,服务注册成功后,会启动一个定时器定时调用consul插件的Register方法,这个方法内部判断服务注册过,则会调用consul自身SDK提供的Agent.PassTTL方法,刷新Consul中对应服务的TTL。


健康检查


go-micro服务的健康状态是通过TTL维护的,服务需要定时去刷新TTL,如果TTL超过指定的时间没有被刷新,则服务会被认为是不健康的。默认情况下有三个设置会涉及到TTL,还是先来看代码:

registry := consul.NewRegistry()
  regCheckFunc := func(ctx context.Context) error {
    fmt.Println(time.Now().Format("2006-01-02 15:04:05") + " do register check")
    if 1+1 == 2 {
      return nil
    }
    return errors.New("this not earth")
  }
  rpcServer := server.NewServer(
    server.Name("registry-consul.service"),
    server.Address("0.0.0.0:8001"),
    server.Registry(registry),
    server.RegisterCheck(regCheckFunc),
    server.RegisterInterval(10*time.Second),
    server.RegisterTTL(20*time.Second),
  )
  proto.RegisterHelloHandler(rpcServer, &Hello{})
  service := micro.NewService(
    micro.Server(rpcServer),
  )
  //service.Init()
  if err := service.Run(); err != nil {
    log.Fatal(err)
  }

关于这三个设置,这里简单介绍下:

1、server.RegisterCheck(regCheckFunc) 服务刷新TTL之前,会调用一个函数检查服务的状态,这个函数的返回值是error类型。默认的函数不进行任何检查,直接返回nil,代表服务状态正常;我们可以自己写一个函数,进行一些检查逻辑,比如是否要下线维护。如果返回的error不是nil,go-micro会尝试在Consul中注销服务,则调用方将不会再访问到这个服务节点。

2、server.RegisterInterval(10*time.Second) 这个设置指定程序去刷新TLL的频率。

3、server.RegisterTTL(20*time.Second) 这个设置指定TTL的生存周期,如果超过这个时间没有刷新TTL,则Consul会认为服务是不健康。

另外需要注意不要使用service.Init(),因为这里边会覆盖 RegisterIntervalRegisterTTL 的设置,除非你不关心这两个参数。关于这个问题可以参考:github.com/asim/go-mic…


客户端使用Consul


调用服务


为了使用Consul做服务发现,需要为go-micro service显式的指定Consul Registry。还是直接看代码:

  registry := consul.NewRegistry()
  service := micro.NewService(
    micro.Client(client.NewClient()),
    micro.Registry(registry),
  )
  service.Init()
  client := proto.NewHelloService("registry-consul.service", service.Client())
  rsp, err := client.Say(context.TODO(), &proto.SayRequest{Name: "BOSSMA"})
  if err != nil {
    fmt.Println(err)
  }
  fmt.Println(rsp)

代码很简单,指定consul作为服务发现组件后,调用服务的时候传递的服务名称就会使用consul进行解析,获取到IP、端口后,再进行实际调用。


发现过程


还是先来看张图,从调用 XXXService 的方法 YYY 开始:

1689144538895.png

整个过程分为两个大的步骤,第一步获取要调用服务的地址,第二步通过http请求调用服务。我们重点看第一步通过Consul获取服务这块。

首先进入一个Selector,就是选择器的意思。Selector首先看缓存中有没有缓存请求服务的地址信息,如果没有就去Consul查询,查询到之后再通过指定的选择策略选出来一个地址,用于后续http请求。这里默认的选择策略是随机选择,比如查询到这个服务有三个部署节点,随机策略会随机返回其中某一个地址。

除了随机策略,go-micro还提供了一个轮询策略,这时候需要自己创建一个Selector:

  registry := consul.NewRegistry()
  selector := selector.NewSelector(
    selector.SetStrategy(selector.RoundRobin),
    selector.Registry(registry),
  )
  service := micro.NewService(
    micro.Client(client.NewClient()),
    micro.Selector(selector),
    //micro.Registry(registry),
  )

另外从上面的示意图中,我们可以看到Selector调用了Registry,所以这里创建Selector的时候,我们把Registry设置了进去,然后再把创建的Selector设置到Service中。其实还有另一种方式,把设置Registry放到设置Selector后边,同样可以把Registry注册到Selector中,但是这样比较隐晦,还需要注意设置顺序,我不推荐。不过如果在Selector之外需要使用Registry的时候,还是需要使用micro.Registry(registry)进行注册,这个例子中并没有相关场景。


效果展示


先启动服务端,然后启动客户端,截图如下:

1689144592955.png

以上就是本文的主要内容,如有错漏欢迎反馈。

演示代码已上传到Github:github.com/bosima/go-d…

相关文章
|
2月前
|
缓存 Go API
Go 实现一个支持多种过期、淘汰机制的本地缓存的核心原理
本文旨在探讨实现一个支持多种 过期、淘汰 机制的 go 本地缓存的核心原理,我将重点讲解如何支持多样化的过期和淘汰策略。
96 0
|
2月前
|
存储 设计模式 Cloud Native
云原生系列Go语言篇-类型、方法和接口 Part 1
通过前面章节的学习,我们知道Go是一种静态类型语言,包含有内置类型和用户定义类型。和大部分现代编程语言一样,Go允许我们对类型关联方法。它也具备类型抽象,可以编写没有显式实现的方法。
57 0
|
12天前
|
Unix Go 开发者
探索Go语言并发模型:原理与实践
本文深入探讨了Go语言的并发模型,包括其设计原理、Goroutine和Channel的基本使用,以及如何在实际项目中高效地应用这些概念来提高程序的性能和可维护性。
|
9天前
|
Go
go反射获取变量类型、值、结构体成员、结构体方法
go反射获取变量类型、值、结构体成员、结构体方法
14 0
|
15天前
|
Go
go基础语法结束篇 ——函数与方法
go基础语法结束篇 ——函数与方法
|
2月前
|
存储 Java Go
Go 语言切片如何扩容?(全面解析原理和过程)
Go 语言切片如何扩容?(全面解析原理和过程)
44 2
|
2月前
|
负载均衡 监控 Go
Golang深入浅出之-Go语言中的服务网格(Service Mesh)原理与应用
【5月更文挑战第5天】服务网格是处理服务间通信的基础设施层,常由数据平面(代理,如Envoy)和控制平面(管理配置)组成。本文讨论了服务发现、负载均衡和追踪等常见问题及其解决方案,并展示了使用Go语言实现Envoy sidecar配置的例子,强调Go语言在构建服务网格中的优势。服务网格能提升微服务的管理和可观测性,正确应对问题能构建更健壮的分布式系统。
43 1
|
2月前
|
JSON 监控 安全
Golang深入浅出之-Go语言中的反射(reflect):原理与实战应用
【5月更文挑战第1天】Go语言的反射允许运行时检查和修改结构,主要通过`reflect`包的`Type`和`Value`实现。然而,滥用反射可能导致代码复杂和性能下降。要安全使用,应注意避免过度使用,始终进行类型检查,并尊重封装。反射的应用包括动态接口实现、JSON序列化和元编程。理解反射原理并谨慎使用是关键,应尽量保持代码静态类型。
40 2
|
2月前
|
编解码 JavaScript 前端开发
【专栏】介绍了字符串Base64编解码的基本原理和在Java、Python、C++、JavaScript及Go等编程语言中的实现示例
【4月更文挑战第29天】本文介绍了字符串Base64编解码的基本原理和在Java、Python、C++、JavaScript及Go等编程语言中的实现示例。Base64编码将24位二进制数据转换为32位可打印字符,用“=”作填充。文中展示了各语言的编码解码代码,帮助开发者理解并应用于实际项目。
|
2月前
|
Go 开发者
Golang深入浅出之-Go语言方法与接收者:面向对象编程初探
【4月更文挑战第22天】Go语言无类和继承,但通过方法与接收者实现OOP。方法是带有接收者的特殊函数,接收者决定方法可作用于哪些类型。值接收者不会改变原始值,指针接收者则会。每个类型有相关方法集,满足接口所有方法即实现该接口。理解并正确使用这些概念能避免常见问题,写出高效代码。Go的OOP机制虽不同于传统,但具有灵活性和实用性。
28 1