基于粒子群优化算法的电动汽车充放电V2G研究(Matlab代码实现)

简介: 基于粒子群优化算法的电动汽车充放电V2G研究(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章讲解


💥1 概述

为解决电动汽车大规模并网带来的一系列问题,国内外逐步在城市商业停车场内提供电动汽车充电服务。在此背景下,提出一种基于电动汽车并网技术的电动汽车充放电停车场模型。该模型响应实时电价,对电动汽车的充电并网行为进行动态调度,继而与电网进行能量交互。在保证电动汽车用户出行需求的前提下,为了使工作区域电动汽车尽可能多的消纳供给商场基础负荷剩余的光伏电量,根据光伏出力与工作区负荷的偏差制定动态分时电价模型,从而减少峰谷差,保障电网稳定性,同时能够提高电动汽车用户的充放电满意度,实现双赢在求解电动汽车最优调度策略时采用粒子群优化算法。


📚2 运行结果


6b01bad27f68aaebeb19f1d5cad42558.png


部分代码:

%% 确定变量
%变量分类,
%被调度车辆: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
%车变量个数: 11, 8, 13, 1,6, 9,17,13,15,16,10, 6, 18,15,12, 9, 6, 5, 11,
%19辆车可调度
[m,n]=size(number_);%n=19
L=max(number_);%18
P=zeros(L,n);
%变量分配,共201个变量
P(1:11,1)=x(1:11);
P(1:8,2)=x(12:19);
P(1:13,3)=x(20:32);
P(1,4)=x(33);
P(1:6,5)=x(34:39);
P(1:9,6)=x(40:48);
P(1:17,7)=x(49:65);
P(1:13,8)=x(66:78);
P(1:15,9)=x(79:93);
P(1:16,10)=x(94:109);
P(1:10,11)=x(110:119);
P(1:6,12)=x(120:125);
P(1:18,13)=x(126:143);
P(1:15,14)=x(144:158);
P(1:12,15)=x(159:170);
P(1:9,16)=x(171:179);
P(1:6,17)=x(180:185);
P(1:5,18)=x(186:190);
P(1:11,19)=x(191:201);
%建立约束
yue_shu=[];
% 储能上下限约束
for i=1:n%车序
for t=1:18%变量
yue_shu=[yue_shu, 60*diaodu_soc(i)*E_car-sum(P(1:t,i))-60*soc_max*E_car];
% sum(pb(1:t))表示访问了把pb从1到t个元素加起来
yue_shu=[yue_shu, 60*diaodu_soc(i)*E_car-sum(P(1:t,i))-60*soc_min*E_car];
end
end
%保证用户出行充电不变约束
for i=1:n%车序
yue_shu=[yue_shu, 60*diaodu_soc(i)*E_car-sum(P(1:18,i))-60*diaodu_socend*E_car];
end


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]邵炜晖,许维胜,徐志宇等.基于改进粒子群算法的电动汽车停车场V2G策略研究[J].计算机科学,2018,45(S2):92-96+116.


🌈4 Matlab代码、数据、文章讲解


相关文章
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
143 80
|
5天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
6天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
28天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
14天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
22天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
30天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
137 15

热门文章

最新文章