Go并发调度进阶-GMP和调度器的主要结构,只有接触到底层你才更有底气

简介: Go并发调度进阶-GMP和调度器的主要结构,只有接触到底层你才更有底气

640.png

Go并发调度进阶



1. GMP主要结构


元旦结束了,该收收心工作了。今天主要是为大家带来GMP主要结构和调度器结构,欢迎大家点赞关注和转发哈。


1. G 的结构


G 既然是 Goroutine,必然需要定义自身的执行栈:


type g struct {
 stack struct {
  lo uintptr
  hi uintptr
 }        // 栈内存:[stack.lo, stack.hi)
 stackguard0 uintptr
 stackguard1 uintptr
 _panic       *_panic
 _defer       *_defer
 m            *m    // 当前的 m
 sched        gobuf
 stktopsp     uintptr  // 期望 sp 位于栈顶,用于回溯检查
 param        unsafe.Pointer // wakeup 唤醒时候传递的参数
 atomicstatus uint32
 goid         int64
 preempt      bool        // 抢占信号,stackguard0 = stackpreempt 的副本
 timer        *timer         // 为 time.Sleep 缓存的计时器
 ...
}


除了执行栈之外,还有很多与调试和 profiling 相关的字段。一个 G 没有什么黑魔法,无非是将需要执行的函数参数进行了拷贝,保存了要执行的函数体的入口地址,用于执行。


2. M 的结构


type m struct {
 g0          *g   // 用于执行调度指令的 Goroutine
 gsignal     *g   // 处理 signal 的 g
 tls         [6]uintptr // 线程本地存储
 curg        *g   // 当前运行的用户 Goroutine
 p           puintptr // 执行 go 代码时持有的 p (如果没有执行则为 nil)
 spinning    bool  // m 当前没有运行 task 且正处于寻找 task 的活跃状态
 cgoCallers  *cgoCallers // cgo 调用崩溃的 cgo 回溯
 alllink     *m   // 在 allm 上
 mcache      *mcache
 ...
}


M 是 OS 线程的实体。我们介绍几个比较重要的字段,包括:


  • 持有用于执行调度器的 g0,goroutine切换需要用到它。
  • 持有用于信号处理的 gsignal
  • 持有线程本地存储 tls
  • 持有当前正在运行的 curg
  • 持有运行 Goroutine 时需要的本地资源 p
  • 表示自身的自旋和非自旋状态 spining
  • 管理在它身上执行的 cgo 调用
  • 将自己与其他的 M 进行串联
  • 持有当前线程上进行内存分配的本地缓存 mcache,内存分配使用。


还有其他五十多个字段,包括关于M的一些调度统计、调试信息等,因为不太重要就没有给大家罗列出来。


3. P 的结构


type p struct {
 id           int32
 status       uint32 // p 的状态 pidle/prunning/...
 link         puintptr
 m            muintptr   // 反向链接到关联的 m (nil 则表示 idle)
 mcache       *mcache
 pcache       pageCache
 deferpool    [5][]*_defer // 不同大小的可用的 defer 结构池
 deferpoolbuf [5][32]*_defer
 runqhead     uint32 // 可运行的 Goroutine 队列,可无锁访问 这是队列头
 runqtail     uint32 //队列尾
 runq         [256]guintptr //使用数组实现的循环队列
 runnext      guintptr
 timersLock   mutex
 timers       []*timer
 preempt      bool
 ...
}


P 只是处理器的抽象,而非处理器本身,大家一定要记住这句话,它仅仅是处理器的抽象,它存在的意义在于实现工作窃取(work stealing)算法。简单来说,每个 P 持有一个本地队列,这个本地队列中存储的就是未来要被调度的 G。


在没有 P 的情况下,所有的 G 只能放在一个全局的队列中。当 M 执行完 G 之后想从全局队列中获取一个G的时候,必须将队列锁住从而取G。


当引入了 P 之后,P 持有 G 的本地队列,而持有 P 的 M 执行完 G 后在 P 本地队列中没有发现其他 G 可以执行时,虽然仍然会先检查全局队列、网络轮询器,但这时增加了一个从其他 P 的 队列偷取(steal)一个 G 来执行的过程。优先级为本地 > 全局 > 网络轮询器 > 偷取


我们举个例子你就知道了:银行柜台有三个窗口,每个窗口都有顾客在排队(本地队列),但是有一个窗口由于处理速度很快一下子就没有人了(本地队列为空),那么这个时候没有在排队的顾客(全局队列)会立刻跑到该窗口,当这个窗口彻底没有人时(全局队列为空),排在其他两个窗口的人迅速跑到这个窗口,即所谓的偷取。


4. GMP调用关系

640.png


M 会从与它绑定的 P 的本地队列获取可运行的 G,也会从网络轮询器里获取可运行的 G,还会从其他 P 偷 G。


5. 调度器sched结构


type schedt struct {
 lock mutex
 pidle      puintptr // 空闲 p 链表
 npidle     uint32 // 空闲 p 数量
 nmspinning uint32 // 自旋状态的 M 的数量
 runq       gQueue // 全局 runnable G 队列
 runqsize   int32
 gFree struct {  // 有效 dead G 的全局缓存.
  lock    mutex
  stack   gList // 包含栈的 Gs
  noStack gList // 没有栈的 Gs
  n       int32
 }
 sudoglock  mutex // sudog 结构的集中缓存
 sudogcache *sudog
 deferlock  mutex // 不同大小的有效的 defer 结构的池
 deferpool  [5]*_defer
 ...
}


调度器初始化步骤:


// runtime/proc.go
func schedinit() {
 _g_ := getg() //当前main的G
 (...)
 // M 初始化
 mcommoninit(_g_.m)
 (...)
 // P 初始化
 if procresize(procs) != nil {
  throw("unknown runnable goroutine during bootstrap")
 }
 (...)
}


640.png

GMP彼此的初始化顺序遵循:mcommoninit、procresize、newproc,他们分别负责初始化 M 资源池(allm)、P 资源池(allp)、G 的运行现场(g.sched)以及调度队列(p.runq)。


6. 小结


本小节主要是讲解GMP主要结构以及调度器结构,下篇主要讲解GMP如何初始化的,相信大家在看完这篇GMP基础之后,再结合下篇文章GMP的初始化,那么就会对GMP有一个更加完美的认识同时你也不用非得报班花6000多的大洋去学习,那些冤枉钱只会让你越来越贫穷,越来越觉得钱花了,工作没有找到,悲矣


相关文章
|
2月前
|
程序员 Go
go语言中的控制结构
【11月更文挑战第3天】
110 58
|
2月前
|
存储 负载均衡 监控
如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
在数字化时代,构建高可靠性服务架构至关重要。本文探讨了如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
55 1
|
2月前
|
Go 调度 开发者
探索Go语言中的并发模式:goroutine与channel
在本文中,我们将深入探讨Go语言中的核心并发特性——goroutine和channel。不同于传统的并发模型,Go语言的并发机制以其简洁性和高效性著称。本文将通过实际代码示例,展示如何利用goroutine实现轻量级的并发执行,以及如何通过channel安全地在goroutine之间传递数据。摘要部分将概述这些概念,并提示读者本文将提供哪些具体的技术洞见。
|
3月前
|
Java 大数据 Go
Go语言:高效并发的编程新星
【10月更文挑战第21】Go语言:高效并发的编程新星
65 7
|
2月前
|
并行计算 安全 Go
Go语言的并发特性
【10月更文挑战第26天】Go语言的并发特性
22 1
|
缓存 Go 调度
深入Golang调度器之GMP模型
前言随着服务器硬件迭代升级,配置也越来越高。为充分利用服务器资源,并发编程也变的越来越重要。在开始之前,需要了解一下并发(concurrency)和并行(parallesim)的区别。 并发: 逻辑上具有处理多个同时性任务的能力。
1707 0
|
22天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
68 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
1月前
|
存储 Go 索引
go语言中数组和切片
go语言中数组和切片
44 7
|
1月前
|
Go 开发工具
百炼-千问模型通过openai接口构建assistant 等 go语言
由于阿里百炼平台通义千问大模型没有完善的go语言兼容openapi示例,并且官方答复assistant是不兼容openapi sdk的。 实际使用中发现是能够支持的,所以自己写了一个demo test示例,给大家做一个参考。
|
1月前
|
程序员 Go
go语言中结构体(Struct)
go语言中结构体(Struct)
110 71