基于空间矢量脉宽调制(SVPWM)的并网逆变器研究(Simulink)

简介: 基于空间矢量脉宽调制(SVPWM)的并网逆变器研究(Simulink)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码实现


💥1 概述

近年来,面对能源的枯竭问题,太阳能、风能等清洁能源不断得到人们的重视,而这些能源都需要通过并网逆变器来接入电网。目前使用最多的调制方法是正弦脉宽调制和空间矢量脉宽调制。现在逆变电路中较为普遍使用的调制技术是 SPWM,而 SVPWM 可以被看作是PWM控制算法的优化,它实际上是SPWM在 空 间 上 的 一 种 拓 展 形 式 。 空 间 矢 量 脉 宽 调 制 (SVPWM)技术具有直流电压利用率高,器件开关次数少、损耗低,算法简单,易于实现数字控制的特点,因而得到广泛应用.


三相电压型桥式逆变电路模型如图 1 所示,它由 6个功率开关管组成,同一桥臂上下 2 个开关是轮流导通和关断的,如 Q1 和 Q2 互差 180°,因此 Q1 和 Q2不可能同时导通,三相电压型逆变电路可以看作是 3个半桥型的电路组合而成的。


1173f2aed8034d91a0c62bcc372a7bf3.png


SPWM 调制法是以三角波或锯齿波作为载波,以正弦波作为调制波的一种脉宽调制方法,这里选用三角波作为载波,如图 2 所示,当调制信号 Ur 大于载波信号 Uc时,输出的是高电平信号,反之则输出低电平信号,从而作为逆变桥的开关信号[2]。


通过 SPWM 的输出波形,可以很直观地发现其导通的占空比是先增大后再减小,周期地发生变化,这样,与占空比不会发生改变的单位脉冲相比,SPWM控制更加具有优越性[3]。这里采用的是双极性 SPWM调制方式,可以通过改变正弦波的幅值来达到改变占空比的宽度。


因此脉宽是随着正弦波幅值变化而变化,正弦波的幅值越大,脉宽越大。SPWM 输出经过滤波后是正弦波。


3ece90d2d02743b48d001f518790ee47.png


📚2 运行结果


f1675c8d0b0d430d9f1d897a21a94fc2.png

caaa931896884103b059bf091d7c94fa.png

fa21441bd883410da321b3727e4f45fa.png

4a76a82decbb4b21897cdbca2a0cdd7d.png


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]邓松彬,杨兆华.基于三相并网逆变器SPWM及SVPWM控制的仿真研究[J].科技与创新,2022(07):35-38+42.DOI:10.15913/j.cnki.kjycx.2022.07.010.


[2]Dr. Siva Malla (2023). SVPWM Based Grid Connected Inverter


[3]郭皓源,王兵,李江坪,李罗,彭诚.基于改进型SVPWM滞环控制并网逆变器优化研究[J].电工技术,2023(03):61-65+69.DOI:10.19768/j.cnki.dgjs.2023.03.015.


🌈4 Matlab代码实现


相关文章
风储微网虚拟惯性控制系统simulink建模与仿真
风储微网虚拟惯性控制系统通过集成风力发电、储能系统等,模拟传统同步发电机的惯性特性,提高微网频率稳定性。Simulink建模与仿真结果显示,加入虚拟惯性控制后,电压更平缓地趋于稳定。该系统适用于大规模可再生能源接入,支持MATLAB2022a版本。
|
15天前
|
传感器 算法
基于MPPT的风力机发电系统simulink建模与仿真
本课题基于最大功率点跟踪(MPPT)技术,对风力机发电系统进行Simulink建模与仿真。通过S函数实现MPPT算法,实时监测和调整风力发电机的工作状态,使其始终工作在最佳效率点,从而最大限度地利用风能,提高风力发电效率。系统包括风速传感器、发电机状态监测模块、MPPT控制器、发电机驱动系统及反馈回路,确保闭环控制的稳定性和准确性。
|
1月前
|
vr&ar C++
基于simulink的风轮机发电系统建模与仿真
本课题使用Simulink实现风轮机发电系统的建模与仿真,涵盖风速模型(基本风、阵风、阶跃风、随机风)、风力机模型及飞轮储能模块。采用MATLAB 2022a进行仿真,详细介绍了各风速成分的数学模型及其组合模型,阐述了风力机从风能捕获到电能输出的全过程,为风力发电系统的设计和优化提供了理论基础和技术支持。
|
4月前
|
算法
基于模糊PID的直流电机控制系统simulink建模与仿真
- **课题概述**: 实现了PID与模糊PID控制器的Simulink建模,对比二者的控制响应曲线。 - **系统仿真结果**: 模糊PID控制器展现出更快的收敛速度与更小的超调。 - **系统原理简介**: - **PID控制器**: 一种广泛应用的线性控制器,通过比例、积分、微分作用控制偏差。 - **模糊PID控制器**: 结合模糊逻辑与PID控制,动态调整PID参数以优化控制性能。 - **模糊化模块**: 将误差和误差变化率转换为模糊量。 - **模糊推理模块**: 根据模糊规则得出控制输出。 - **解模糊模块**: 将模糊控制输出转换为实际控制信号。
|
4月前
|
传感器
基于矢量控制的交流电机驱动simulink建模与仿真
**基于MATLAB2022a的交流电机矢量控制Simulink模型研究,展示了电机的转速、扭矩、电压和电流仿真。矢量控制利用坐标变换独立控制电机的转矩和磁通,提升动态性能和效率。通过电流采样、坐标变换、控制器设计和PWM调制实现,适用于电动汽车等领域的高效驱动。**
|
4月前
|
传感器 算法
基于MPPT最大功率跟踪算法的风力机控制电路simulink建模与仿真
**摘要:** 本课题利用MATLAB2022a的Simulink进行风力机MPPT控制电路仿真,关注风力机转速、功率参数及CP效率。MPPT确保风力机在不同风速下优化运行,捕捉最大功率。风力机将风能转化为电能,功率与风速、叶片及发电机特性相关。MPPT算法动态调整参数以保持在最大功率点,常见算法如扰动观察法。仿真包含风速、转速、功率测量及控制算法模块,设计时需综合考虑传感器精度、抗干扰及控制器性能,适应不同风力机和发电机需求。
|
4月前
|
存储
基于蓄电池和飞轮混合储能系统的SIMULINK建模与仿真
构建了基于SIMULINK的蓄电池-飞轮混合储能系统模型,重点在于飞轮模型与控制策略。仿真展示了充放电电流电压、功率波形及交流负载端的电气参数变化,揭示了系统从波动到稳定的过程。 ### 系统原理 - 混合储能系统结合了蓄电池(化学能转换)和飞轮(动能存储)的优势,提供高效快速的能量响应。 - 蓄电池通过化学反应进行能量储存和释放。 - 飞轮储能利用电动机/发电机转换动能和电能。 - 智能控制协调二者工作,适应电力系统需求,提升系统性能。 ### 混合储能原理 混合系统利用控制系统协同蓄电池和飞轮,优化充电和放电,以提高储能效率和电力系统的整体表现,预示着其未来广泛应用的潜力。
基于PI控制的PMSM永磁同步电机控制系统simulink建模与仿真
该文探讨了基于PI控制的PMSM永磁同步电机Simulink建模与仿真,采用矢量控制策略,不依赖Simulink内置模型。在MATLAB2022a环境下,建立了电机数学模型,简化了复杂的电磁关系。PI控制器用于实现电流解耦控制,提高动态响应。控制系统通过PI调节直轴和交轴电流,经坐标变换和PWM调制驱动电机运行,实现高性能闭环控制。
|
6月前
|
算法
Simulink|局部遮荫下光伏组件多峰值PSO-MPPT控制
Simulink|局部遮荫下光伏组件多峰值PSO-MPPT控制
|
6月前
|
算法 新能源
Simulink|【免费】虚拟同步发电机(VSG)惯量阻尼自适应控制仿真模型
Simulink|【免费】虚拟同步发电机(VSG)惯量阻尼自适应控制仿真模型