计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置(Matlab代码实现)

简介: 计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

1.1 改进灰狼优化算法

1.2 计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置概述

📚2 运行结果

2.1 需求响应前

2.2 实时电价(需求响应)

2.3 实时电价(需求响应)

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

1.1 改进灰狼优化算法


b69761315491a39dad3c65b17870ed9a.png


摘要:在分析灰狼优化算法不足的基础上,提出一种改进的灰狼优化算法(CGWO),该算法采用基于余弦规律变化的收敛因子,平衡算法的全局搜索和局部搜索能力,同时引入基于步长欧氏距离的比例权重更新灰狼位置,从而加快算法的收敛速度。对8个经典测试函数进行仿真实验,结果表明CGWO算法的求解精度更高,稳定性更好。最后以预测谷氨酸菌体生长浓度为例,利用CGWO算法估计Richards模型的参数,以均方根误差和平均绝对误差作为评价指标,与PSO算法、GA算法和VS-FOA算法的结果进行比较,CGWO算法可以有效地估计Richards模型中的参数。


关键词:


灰狼优化算法;收敛因子;Richards模型;参数估计;


13f2da5b1a6daa02fa83946222948562.png


1.2 计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置概述

参考文献:


7b01a008d8493ab235fab00a9eb4509f.png


编辑 在偏远地区和远离内陆的海岛,由于连接大电网建设成本高、技术难度大,通常选择柴油发电机供电,但存在燃料运输成本高、价格波动大、环境污染严重等问题,难以保障上述地区稳定的电力供应。相比柴油发电机而言,这些地区往往拥有丰富的风、光等可再生清洁资源。因此,因地制宜地建设以风、光可再生能源为核心的独立微电网是解决上述地区供电问题的重要途径之一。对独立微电网进行电源容量配置是系统优化设计的重要内容之一,也是保障系统安全可靠运行的重要基础[1] 。由于独立微电网中分布式电源种类较多且各发电单元出力特性差异较大,使得微电网容量优化配置问题呈现高度非线性、复杂性和不确定性,从而使得传统优化方法很难取得令人满意的结果[2] 。


近年,遗传算法 、细菌觅食算法及粒子群算法等智能优化算法在微电网容量优化配置中获得广泛应用。 文献[7]使用改进果蝇算法求解独立微电网的电源容量优化配置问题,优化目标函数包括系统运行成本和环保成本; 文献[8]提出以投资总成本和缺电负荷率为目标的微电网优


化配置模型,并利用多目标微分进化算法进行优化求解,实现微电网的容量最优配置;文献[9]在建立风-光-蓄-柴微电网电源配置模型的基础上,采用人工蜂群算法对优化问题进行求解,并对不同电源组合方式下的运行成本和污染物排放进行了对比分析。


📚2 运行结果

2.1 需求响应前


1e6e015f7c3d3e95f5419050d70c09cd.png

8b2f151293627a8b4da54a0823a9354d.png

7dfdeeb5fc4c77ad4086a0d02f0f2f40.png

0871936c873bae4e241cefa9d44b9fe4.png


收敛曲线:




2.2 实时电价(需求响应)


5817ed2081eb5ac865b0cb6e6ef86e47.png

2f3e0b8512e2ecd68e261835658a4671.png

fa88bc3223ff67857f9ba9cc6f7d6be3.png

044fdc78355dc0f0a3eb3d6a5b7726f8.png

89f9c5ae4f31fbb902492ab358461b56.png

7ffa9c4e723f15ef4a098c6ff593b7a2.png

c7f8224c8c9dbbf408e4897d329496e5.png

05ccecd93e48800a7c1fc358ec1249c1.png


2.3 实时电价(需求响应)

e8f4678ca15fc47a7ed497ec46ecb2b5.png

bbfb063cd771375a6d835bac540c5a7f.png

eb5d08e202865ce9d4d83de7a72cd953.png

5550fe9347e88ad30b29d5334bfe7538.png

5dfcb6f79f3452e8493b9a551cfb99de.png

71c8a6544280342fb87b011fbcf47f0b.png

2860549650c247270f564dc2da70700c.png

6aded2bb33f51c38eff71258d48230ef.png

96716547f2cd0bf47c40febb8336c810.png


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]赵超,王斌,孙志新,汪轩.基于改进灰狼算法的独立微电网容量优化配置[J].太阳能学报,2022,43(01):256-262.DOI:10.19912/j.0254-0096.tynxb.2020-0042.


🌈4 Matlab代码实现


相关文章
|
23天前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
24天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
56 1
|
1月前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
|
19天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
25天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
21天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。

热门文章

最新文章