【机会约束、鲁棒优化】机会约束和鲁棒优化研究优化【ccDCOPF】研究(Matlab代码实现)

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: 【机会约束、鲁棒优化】机会约束和鲁棒优化研究优化【ccDCOPF】研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码实现


💥1 概述

随机规划的三个分支分别为期望值模型、机会约束规划和相关机会规划。机会约束规划是继期望值模型之后,由A. Charnes和 W.W. Cooper于 1959年提出的第二类随机规划[33]。CCP是考虑到所做决策在不利情况发生时可能不满足约束条件而采用的一种原则:即允许所做决策在一定程度上不满足约束条件,但该决策使约束条件成立的概率不小于某一置信水平。一般形式的机会约束可表示为:


3ada8d80d0a54267ab832997332178af.png


CCP 是处理随机规划问题的经典方法之一,其主要利用概率形式约束处理约束条件中含有随机变量的优化问题,CCP 方法具有以下特点:


(1)为了有效处理含随机变量的约束问题,CCP 将传统规划模型中的硬约束变为概率形式约束,以实现考虑随机变量的大概率事件,减小低概率极端事件对最优解的影响,一定程度上提高了最优解的合理性。


(2)对于问题中的随机变量,仅在约束中以机会约束的形式进行体现,未在目标函数中予以反映,而规划问题的最优解与概率约束的置信水平直接相关,且其置信水平可根据决策者的风险偏好或实际经验进行设定。


(3)当模型中含有多个机会约束时,在优化过程中将予以同等对待,无主次顺序之分。


(4)CCP 模型的求解过程中常需利用 MCS 过程和智能算法,其求解过程较为复杂,求解效率与结果质量都受到一定影响;若通过解析法求解则需较复杂的数学推导,以上因素在一定程度上了限制了 CCP 方法在复杂问题中的应用。


📚2 运行结果



部分代码:

clear; clc; close all;
fig_size = [10,10,800,400];
beta = 10^(-2);
% casename = 'ex_case3sc'; N = 100;
casename = 'ex_case24_ieee_rts'; N = 2048;
eps_scale = 0.01:0.01:0.1;
result_sa = load([casename,'-scenario approach-results.mat']);
result_ca = load([casename,'-convex approximation-type-results-N=',num2str(N),'.mat']);
result_saa = load([casename,'-sample average approximation-sampling and discarding-results-N=',num2str(N),'.mat']);
result_rc = load([casename,'-robust counterpart-results-N=',num2str(N),'.mat']);
% result_lb = load([casename,'-obj-lower-bound.mat']);
f_eps = figure('Position', fig_size);
lgd_str = {};
plot(eps_scale,eps_scale,'g-.','LineWidth',2), hold on, lgd_str = [lgd_str,'ideal case'];
plot(nanmean(result_sa.eps_pri,2), nanmean(result_sa.eps_empirical,2),'-x','LineWidth',2), hold on, lgd_str = [lgd_str,'SA:priori'];
plot(nanmean(result_sa.eps_post,2), nanmean(result_sa.eps_empirical,2),'-*','LineWidth',2), hold on, lgd_str = [lgd_str,'SA:posteriori'];
plot(result_saa.epsilons, nanmean(result_saa.eps_empirical,2),'-o','LineWidth',2), hold on, lgd_str = [lgd_str,'SAA:s&d'];
plot(result_rc.eps, nanmean(result_rc.eps_empirical_box,2)*ones(size(result_rc.eps)),'--v','LineWidth',2), hold on, lgd_str = [lgd_str,'RC:box'];
% plot(result_rc.eps, nanmean(result_rc.eps_empirical_ball,2),':v','LineWidth',2), hold on, lgd_str = [lgd_str,'RC:ball'];
% plot(result_rc.eps, nanmean(result_rc.eps_empirical_ballbox,2),'-v','LineWidth',2), hold on, lgd_str = [lgd_str,'RC:ballbox'];
% plot(result_rc.eps, nanmean(result_rc.eps_empirical_budget,2),'-.v','LineWidth',2), hold on, lgd_str = [lgd_str,'RC:budget'];
plot(result_ca.eps, nanmean(result_ca.eps_empirical,2),'-d','LineWidth',2), hold on, lgd_str = [lgd_str,'CA:markov'];
legend(lgd_str,'Location','NorthWest')
set(gca,'yscale','log')
% xlim([0,0.9]), ylim([1e-4 10])
xlim([0,0.12]), ylim([1e-3 0.2])
xlabel('violation probability (setting)'),ylabel('violation probability (out-of-sample)')
set(gca,'FontSize',12,'fontname','times')
print(f_eps,'-depsc','-painters',[casename,'-all-methods-epsilon.eps'])
f_eps_err = figure('Position', fig_size);
lgd_str = {};
% plot(eps_scale,eps_scale,'g-.','LineWidth',2), hold on, lgd_str = [lgd_str,'ideal case'];
errorbar(nanmean(result_sa.eps_pri,2), nanmean(result_sa.eps_empirical,2),nanstd(result_sa.eps_empirical,[],2),'-x','LineWidth',2), hold on, lgd_str = [lgd_str,'SA:priori'];
errorbar(nanmean(result_sa.eps_post,2), nanmean(result_sa.eps_empirical,2),nanstd(result_sa.eps_empirical,[],2),'-*','LineWidth',2), hold on, lgd_str = [lgd_str,'SA:posteriori'];
errorbar(result_saa.epsilons, nanmean(result_saa.eps_empirical,2),nanstd(result_saa.eps_empirical,[],2),'-o','LineWidth',2), hold on, lgd_str = [lgd_str,'SAA:s&d'];
plot(result_rc.eps, nanmean(result_rc.eps_empirical_box,2)*ones(size(result_rc.eps)),'--v','LineWidth',2), hold on, lgd_str = [lgd_str,'RC:box'];
errorbar(result_rc.eps, nanmean(result_rc.eps_empirical_ball,2),nanstd(result_rc.eps_empirical_ball,[],2),':v','LineWidth',2), hold on, lgd_str = [lgd_str,'RC:ball'];
errorbar(result_rc.eps, nanmean(result_rc.eps_empirical_ballbox,2),nanstd(result_rc.eps_empirical_ballbox,[],2),'-v','LineWidth',2), hold on, lgd_str = [lgd_str,'RC:ballbox'];
% errorbar(result_rc.eps, nanmean(result_rc.eps_empirical_budget,2),nanstd(result_rc.eps_empirical_budget,[],2),'-.v','LineWidth',2), hold on,
errorbar(result_ca.eps, nanmean(result_ca.eps_empirical,2), nanstd(result_ca.eps_empirical,[],2),'-d','LineWidth',2), hold on, lgd_str = [lgd_str,'CA:markov'];
legend(lgd_str,'Location','NorthWest')
% xlim([0,0.12])
xlim([0,0.09])
% ylim([0,0.09])
xlabel('violation probability (setting)'),ylabel('violation probability (out-of-sample)')
set(gca,'FontSize',12,'fontname','times')
print(f_eps_err,'-depsc','-painters',[casename,'-all-methods-epsilon-errorbar.eps'])
f_obj = figure('Position', fig_size);
lgd_str = {};
% plot(result_lb.epsilons, result_lb.obj_low, ':^'), hold on,
% plot(nanmean(result_sa.eps_pri,2), nanmean(result_sa.obj,2),'-x','LineWidth',2), hold on, lgd_str = [lgd_str,'SA:priori'];
% plot(nanmean(result_sa.eps_post,2), nanmean(result_sa.obj,2),'-*','LineWidth',2), hold on, lgd_str = [lgd_str,'SA:posteriori'];
% plot(result_saa.epsilons, nanmean(result_saa.obj,2),'-o','LineWidth',2), hold on, lgd_str = [lgd_str,'SAA:s&d'];
plot(result_rc.eps, nanmean(result_rc.obj_box,2)*ones(size(result_rc.eps)),'--v','LineWidth',2), hold on, lgd_str = [lgd_str,'RC:box'];
plot(result_rc.eps, nanmean(result_rc.obj_ball,2),':v','LineWidth',2), hold on, lgd_str = [lgd_str,'RC:ball'];
plot(result_rc.eps, nanmean(result_rc.obj_ballbox,2),'-v','LineWidth',2), hold on, lgd_str = [lgd_str,'RC:ballbox'];
% plot(result_rc.eps, nanmean(result_rc.obj_budget,2),'-.v','LineWidth',2), hold on,
% plot(result_ca.eps, nanmean(result_ca.obj, 2),'-d','LineWidth',2), hold on, lgd_str = [lgd_str,'CA:markov'];
legend(lgd_str)
xlabel('violation probability \epsilon (setting)'),ylabel('objective value')
xlim([0 0.1])
set(gca,'FontSize',12,'fontname','times')
print(f_obj,'-depsc','-painters',[casename,'-all-methods-objective.eps'])
% f_obj_emp = figure('Position', fig_size);
% % plot(result_lb.epsilons, result_lb.obj_low,'-^'), hold on,
% [result_sa_eps_empirical,indices] = sort( nanmean(result_sa.eps_empirical,2),'ascend' );
% plot(result_sa_eps_empirical, nanmean(result_sa.obj(indices,:),2),'-v'), hold on,
% [result_saa_eps_empirical,indices] = sort( nanmean(result_saa.eps_empirical,2),'ascend' );
% plot(result_saa_eps_empirical, nanmean(result_saa.obj(indices,:),2),'-d'), hold on,
% [result_rc_eps_empirical_box,indices] = sort( nanmean(result_rc.eps_empirical_box,2),'ascend' );
% plot(result_rc_eps_empirical_box, nanmean(result_rc.obj_box(indices,:),2),'-*'), hold on,
% [result_rc_eps_empirical_ball,indices] = sort( nanmean(result_rc.eps_empirical_ball,2),'ascend' );
% plot(result_rc_eps_empirical_ball, nanmean(result_rc.obj_ball(indices,:),2),'-*'), hold on,
% [result_rc_eps_empirical_ballbox,indices] = sort( nanmean(result_rc.eps_empirical_ballbox,2),'ascend' );
% plot(result_rc_eps_empirical_ballbox, nanmean(result_rc.obj_ballbox(indices,:),2),'-x'), hold on,
% [result_rc_eps_empirical_budget,indices] = sort( nanmean(result_rc.eps_empirical_budget,2),'ascend' );
% plot(result_rc_eps_empirical_budget, nanmean(result_rc.obj_budget(indices,:),2),'-x'), hold on,
% [result_ca_eps_empirical,indices] = sort( nanmean(result_ca.eps_empirical,2),'ascend' );
% plot(result_ca_eps_empirical, nanmean(result_ca.obj,2),'-d','LineWidth',2), hold on,
% % legend('lower bound','SA','SAA:s&d','RC:box','RC:ball','RC:ballbox','RC:budget')
% legend('SA','SAA:s&d','RC:box','RC:ball','RC:ballbox','RC:budget','CA:markov')
% set(gca,'xscale','log')
% xlim([0 0.06])


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]付波,邓竞成,康毅恒.基于机会约束的园区综合能源系统优化调度[J].湖北工业大学学报,2023,38(01):11-14+32.


[2]耿晓路. 分布鲁棒机会约束优化问题的研究[D].湘潭大学,2018.


[3]王扬. 基于机会约束目标规划的含风电电力系统优化调度研究[D].华北电力大学(北京),2017.


🌈4 Matlab代码实现


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)