如何使用Python和sqlite3构建一个轻量级的数据采集和分析平台

简介: 据采集和分析是当今时代的一项重要技能,它可以帮助我们从互联网上获取有价值的数据,并对其进行处理和挖掘,从而获得有用的信息和洞察。但是,数据采集和分析并不是一件容易的事情,它需要我们掌握各种工具和技术,如爬虫、数据库、编程语言、统计方法、可视化工具等。

亿牛云代理.png

引言

数据采集和分析是当今时代的一项重要技能,它可以帮助我们从互联网上获取有价值的数据,并对其进行处理和挖掘,从而获得有用的信息和洞察。但是,数据采集和分析并不是一件容易的事情,它需要我们掌握各种工具和技术,如爬虫、数据库、编程语言、统计方法、可视化工具等。
在本文中,我们将介绍如何使用Python和sqlite3构建一个轻量级的数据采集和分析平台,它可以让我们方便地爬取、存储、查询、处理和展示数据,而无需安装复杂的数据库服务器或其他软件。我们将使用Python作为主要的编程语言,它是一种简洁、优雅、易学、功能强大的语言,广泛应用于数据科学领域。我们将使用sqlite3作为主要的数据库系统,它是一种嵌入式的关系型数据库,它可以将整个数据库存储在一个单独的文件中,而无需配置或管理任何服务器。我们还将使用一些Python的第三方库,如requests、BeautifulSoup、pandas、numpy、matplotlib等,来辅助我们进行数据采集和分析。
本文的目的是让你了解Python和sqlite3的基本用法和特点,以及如何结合它们进行数据采集和分析。本文不涉及太多的细节和高级功能,如果你想深入学习,请参考相关的文档和教程。本文假设你已经具备一定的Python和SQL基础知识。

正文

创建和连接数据库

首先,我们需要创建一个数据库文件来存储我们采集到的数据。我们可以使用Python自带的sqlite3模块来实现这一步骤。sqlite3模块提供了一个connect()函数,它可以接受一个文件名作为参数,并返回一个Connection对象,表示与数据库的连接。如果文件名不存在,则会自动创建一个新的数据库文件。例如:

import sqlite3
conn = sqlite3.connect("data.db")

这样就创建了一个名为data.db的数据库文件,并建立了与之的连接。我们可以通过Connection对象来执行各种操作,如创建表、插入数据、查询数据等。为了方便操作,我们还可以创建一个Cursor对象,它是一个用于执行SQL语句并获取结果的游标。例如:

cur = conn.cursor()

创建表

接下来,我们需要在数据库中创建一些表来存储我们采集到的数据。表是由行和列组成的二维结构,每一行表示一条记录,每一列表示一个字段。每个表都有一个唯一的名字,并且每个字段都有一个类型和一个名字。sqlite3支持以下几种类型:NULL、INTEGER、REAL、TEXT、BLOB。
为了创建表,我们需要使用CREATE TABLE语句,并指定表名、字段名、字段类型等信息。例如:

cur.execute("CREATE TABLE news (id INTEGER PRIMARY KEY, title TEXT, content TEXT, url TEXT, source TEXT, date TEXT)")

这样就创建了一个名为news的表,并定义了六个字段:id、title、content、url、source、date。其中id字段是主键,表示每条记录的唯一标识符;title字段是文本类型,表示新闻标题;content字段是文本类型,表示新闻内容;url字段是文本类型,表示新闻链接;source字段是文本类型,表示新闻来源;date字段是文本类型,表示新闻日期。注意,每条SQL语句都需要以分号结尾。
我们可以使用PRAGMA table_info()语句来查看表的结构信息,例如:

cur.execute("PRAGMA table_info(news)")
print(cur.fetchall())

这样就可以打印出表的结构信息,如字段名、字段类型、是否主键等。输出结果如下:

[(0, 'id', 'INTEGER', 0, None, 1), (1, 'title', 'TEXT', 0, None, 0), (2, 'content', 'TEXT', 0, None, 0), (3, 'url', 'TEXT', 0, None, 0), (4, 'source', 'TEXT', 0, None, 0), (5, 'date', 'TEXT', 0, None, 0)]

爬取数据

创建好表之后,我们需要从互联网上爬取一些数据来填充我们的表。为了爬取数据,我们需要使用Python的第三方库requests和BeautifulSoup来实现。requests库可以让我们方便地发送HTTP请求并获取响应内容;BeautifulSoup库可以让我们方便地解析HTML文档并提取所需的数据。
为了提高爬虫的效率和稳定性,我们还需要使用代理服务器来避免被目标网站屏蔽或限制。代理服务器是一种中间服务器,它可以帮助我们隐藏自己的真实IP地址,并访问一些受限制的网站。在本文中,我们将使用亿牛云代理服务器来实现这一功能。
首先,我们需要导入requests和BeautifulSoup库,并设置代理服务器的相关信息。例如:

import requests
from bs4 import BeautifulSoup

# 爬虫代理加强版 
# 亿牛云 代理服务器
proxyHost = "www.16yun.cn"
proxyPort = "31111"

# 代理验证信息
proxyUser = "16YUN"
proxyPass = "16IP"

# 构造代理字典
proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {
   
   
    "host": proxyHost,
    "port": proxyPort,
    "user": proxyUser,
    "pass": proxyPass,
}

proxies = {
   
   
    "http": proxyMeta,
    "https": proxyMeta,
}

然后,我们需要定义一个爬虫函数,它可以接受一个网址作为参数,并返回一个包含新闻信息的字典。例如:

def crawl_news(url):
    # 发送HTTP请求并获取响应内容
    response = requests.get(url, proxies=proxies)
    html = response.text

    # 解析HTML文档并提取所需的数据
    soup = BeautifulSoup(html, "html.parser")
    title = soup.find("h1").get_text() # 新闻标题
    content = soup.find("div", class_="article").get_text() # 新闻内容
    source = soup.find("span", class_="source").get_text() # 新闻来源
    date = soup.find("span", class_="date").get_text() # 新闻日期

    # 构造新闻信息字典并返回
    news = {
   
   
        "title": title,
        "content": content,
        "url": url,
        "source": source,
        "date": date
    }
    return news

最后,我们需要定义一个爬虫任务函数,它可以接受一个包含多个网址的列表作为参数,并使用异步委托等高性能特性来并发地执行爬虫函数,并将结果保存到数据库中。例如:

import asyncio

def crawl_task(urls):
    # 创建一个异步事件循环
    loop = asyncio.get_event_loop()

    # 创建一个异步任务列表
    tasks = []

    # 遍历每个网址,创建一个异步任务,并添加到任务列表中
    for url in urls:
        task = loop.run_in_executor(None, crawl_news, url)
        tasks.append(task)

    # 等待所有任务完成,并获取结果
    results = loop.run_until_complete(asyncio.gather(*tasks))

    # 关闭事件循环
    loop.close()

    # 遍历每个结果,插入到数据库中
    for news in results:
        cur.execute("INSERT INTO news (title, content, url, source, date) VALUES (?, ?, ?, ?, ?)", (news["title"], news["content"], news["url"], news["source"], news["date"]))
        conn.commit()

这样就完成了爬虫任务函数的编写,它可以利用异步委托等高性能特性来提高爬虫的效率和稳定性,并将采集到的数据保存到数据库中。

分析数据

爬取好数据之后,我们需要对数据进行进一步的处理和分析。为了分析数据,我们可以使用Python自带的模块或第三方库来实现各种功能,如数学运算、统计分析、可视化展示等。例如:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 将news表中的数据转换为pandas DataFrame对象
df = pd.read_sql_query("SELECT * FROM news", conn)

# 查看DataFrame对象的基本信息
print(df.info())

# 查看DataFrame对象的描述性统计信息
print(df.describe())

# 绘制DataFrame对象中source字段的饼图,显示不同新闻来源的占比
df["source"].value_counts().plot.pie()
plt.show()

这样就可以使用pandas、numpy、matplotlib等库来对数据进行分析和可视化,从而获得有用的信息和洞察。

结论

本文介绍了如何使用Python和sqlite3构建一个轻量级的数据采集和分析平台,它可以让我们方便地爬取、存储、查询、处理和展示数据,而无需安装复杂的数据库服务器或其他软件。我们使用Python作为主要的编程语言,它是一种简洁、优雅、易学、功能强大的语言,广泛应用于数据科学领域。我们使用sqlite3作为主要的数据库系统,它是一种嵌入式的关系型数据库,它可以将整个数据库存储在一个单独的文件中,而无需配置或管理任何服务器。我们还使用一些Python的第三方库,如requests、BeautifulSoup、pandas、numpy、matplotlib等,来辅助我们进行数据采集和分析。
本文只是一个简单的示例,不涉及太多的细节和高级功能,如果你想深入学习,请参考相关的文档和教程。本文希望能够给你一些启发和帮助,让你能够利用Python和sqlite3来实现你自己的数据采集和分析项目。感谢你的阅读!

相关文章
|
27天前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
84 35
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
64 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
28天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
251 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
18天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
97 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
75 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
22天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
137 9
|
1月前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
9月前
|
存储 数据库连接 数据库
Android数据存储:解释SQLite数据库在Android中的使用。
Android数据存储:解释SQLite数据库在Android中的使用。
107 0
|
8月前
|
数据库 Android开发 数据安全/隐私保护
在 Android Studio 中结合使用 SQLite 数据库实现简单的注册和登录功能
在 Android Studio 中结合使用 SQLite 数据库实现简单的注册和登录功能
311 2
|
8月前
|
SQL 存储 数据库
48. 【Android教程】数据库:SQLite 的使用
48. 【Android教程】数据库:SQLite 的使用
153 1

热门文章

最新文章

推荐镜像

更多