如何使用Python和sqlite3构建一个轻量级的数据采集和分析平台

简介: 据采集和分析是当今时代的一项重要技能,它可以帮助我们从互联网上获取有价值的数据,并对其进行处理和挖掘,从而获得有用的信息和洞察。但是,数据采集和分析并不是一件容易的事情,它需要我们掌握各种工具和技术,如爬虫、数据库、编程语言、统计方法、可视化工具等。

亿牛云代理.png

引言

数据采集和分析是当今时代的一项重要技能,它可以帮助我们从互联网上获取有价值的数据,并对其进行处理和挖掘,从而获得有用的信息和洞察。但是,数据采集和分析并不是一件容易的事情,它需要我们掌握各种工具和技术,如爬虫、数据库、编程语言、统计方法、可视化工具等。
在本文中,我们将介绍如何使用Python和sqlite3构建一个轻量级的数据采集和分析平台,它可以让我们方便地爬取、存储、查询、处理和展示数据,而无需安装复杂的数据库服务器或其他软件。我们将使用Python作为主要的编程语言,它是一种简洁、优雅、易学、功能强大的语言,广泛应用于数据科学领域。我们将使用sqlite3作为主要的数据库系统,它是一种嵌入式的关系型数据库,它可以将整个数据库存储在一个单独的文件中,而无需配置或管理任何服务器。我们还将使用一些Python的第三方库,如requests、BeautifulSoup、pandas、numpy、matplotlib等,来辅助我们进行数据采集和分析。
本文的目的是让你了解Python和sqlite3的基本用法和特点,以及如何结合它们进行数据采集和分析。本文不涉及太多的细节和高级功能,如果你想深入学习,请参考相关的文档和教程。本文假设你已经具备一定的Python和SQL基础知识。

正文

创建和连接数据库

首先,我们需要创建一个数据库文件来存储我们采集到的数据。我们可以使用Python自带的sqlite3模块来实现这一步骤。sqlite3模块提供了一个connect()函数,它可以接受一个文件名作为参数,并返回一个Connection对象,表示与数据库的连接。如果文件名不存在,则会自动创建一个新的数据库文件。例如:

import sqlite3
conn = sqlite3.connect("data.db")

这样就创建了一个名为data.db的数据库文件,并建立了与之的连接。我们可以通过Connection对象来执行各种操作,如创建表、插入数据、查询数据等。为了方便操作,我们还可以创建一个Cursor对象,它是一个用于执行SQL语句并获取结果的游标。例如:

cur = conn.cursor()

创建表

接下来,我们需要在数据库中创建一些表来存储我们采集到的数据。表是由行和列组成的二维结构,每一行表示一条记录,每一列表示一个字段。每个表都有一个唯一的名字,并且每个字段都有一个类型和一个名字。sqlite3支持以下几种类型:NULL、INTEGER、REAL、TEXT、BLOB。
为了创建表,我们需要使用CREATE TABLE语句,并指定表名、字段名、字段类型等信息。例如:

cur.execute("CREATE TABLE news (id INTEGER PRIMARY KEY, title TEXT, content TEXT, url TEXT, source TEXT, date TEXT)")

这样就创建了一个名为news的表,并定义了六个字段:id、title、content、url、source、date。其中id字段是主键,表示每条记录的唯一标识符;title字段是文本类型,表示新闻标题;content字段是文本类型,表示新闻内容;url字段是文本类型,表示新闻链接;source字段是文本类型,表示新闻来源;date字段是文本类型,表示新闻日期。注意,每条SQL语句都需要以分号结尾。
我们可以使用PRAGMA table_info()语句来查看表的结构信息,例如:

cur.execute("PRAGMA table_info(news)")
print(cur.fetchall())

这样就可以打印出表的结构信息,如字段名、字段类型、是否主键等。输出结果如下:

[(0, 'id', 'INTEGER', 0, None, 1), (1, 'title', 'TEXT', 0, None, 0), (2, 'content', 'TEXT', 0, None, 0), (3, 'url', 'TEXT', 0, None, 0), (4, 'source', 'TEXT', 0, None, 0), (5, 'date', 'TEXT', 0, None, 0)]

爬取数据

创建好表之后,我们需要从互联网上爬取一些数据来填充我们的表。为了爬取数据,我们需要使用Python的第三方库requests和BeautifulSoup来实现。requests库可以让我们方便地发送HTTP请求并获取响应内容;BeautifulSoup库可以让我们方便地解析HTML文档并提取所需的数据。
为了提高爬虫的效率和稳定性,我们还需要使用代理服务器来避免被目标网站屏蔽或限制。代理服务器是一种中间服务器,它可以帮助我们隐藏自己的真实IP地址,并访问一些受限制的网站。在本文中,我们将使用亿牛云代理服务器来实现这一功能。
首先,我们需要导入requests和BeautifulSoup库,并设置代理服务器的相关信息。例如:

import requests
from bs4 import BeautifulSoup

# 爬虫代理加强版 
# 亿牛云 代理服务器
proxyHost = "www.16yun.cn"
proxyPort = "31111"

# 代理验证信息
proxyUser = "16YUN"
proxyPass = "16IP"

# 构造代理字典
proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {
   
   
    "host": proxyHost,
    "port": proxyPort,
    "user": proxyUser,
    "pass": proxyPass,
}

proxies = {
   
   
    "http": proxyMeta,
    "https": proxyMeta,
}

然后,我们需要定义一个爬虫函数,它可以接受一个网址作为参数,并返回一个包含新闻信息的字典。例如:

def crawl_news(url):
    # 发送HTTP请求并获取响应内容
    response = requests.get(url, proxies=proxies)
    html = response.text

    # 解析HTML文档并提取所需的数据
    soup = BeautifulSoup(html, "html.parser")
    title = soup.find("h1").get_text() # 新闻标题
    content = soup.find("div", class_="article").get_text() # 新闻内容
    source = soup.find("span", class_="source").get_text() # 新闻来源
    date = soup.find("span", class_="date").get_text() # 新闻日期

    # 构造新闻信息字典并返回
    news = {
   
   
        "title": title,
        "content": content,
        "url": url,
        "source": source,
        "date": date
    }
    return news

最后,我们需要定义一个爬虫任务函数,它可以接受一个包含多个网址的列表作为参数,并使用异步委托等高性能特性来并发地执行爬虫函数,并将结果保存到数据库中。例如:

import asyncio

def crawl_task(urls):
    # 创建一个异步事件循环
    loop = asyncio.get_event_loop()

    # 创建一个异步任务列表
    tasks = []

    # 遍历每个网址,创建一个异步任务,并添加到任务列表中
    for url in urls:
        task = loop.run_in_executor(None, crawl_news, url)
        tasks.append(task)

    # 等待所有任务完成,并获取结果
    results = loop.run_until_complete(asyncio.gather(*tasks))

    # 关闭事件循环
    loop.close()

    # 遍历每个结果,插入到数据库中
    for news in results:
        cur.execute("INSERT INTO news (title, content, url, source, date) VALUES (?, ?, ?, ?, ?)", (news["title"], news["content"], news["url"], news["source"], news["date"]))
        conn.commit()

这样就完成了爬虫任务函数的编写,它可以利用异步委托等高性能特性来提高爬虫的效率和稳定性,并将采集到的数据保存到数据库中。

分析数据

爬取好数据之后,我们需要对数据进行进一步的处理和分析。为了分析数据,我们可以使用Python自带的模块或第三方库来实现各种功能,如数学运算、统计分析、可视化展示等。例如:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 将news表中的数据转换为pandas DataFrame对象
df = pd.read_sql_query("SELECT * FROM news", conn)

# 查看DataFrame对象的基本信息
print(df.info())

# 查看DataFrame对象的描述性统计信息
print(df.describe())

# 绘制DataFrame对象中source字段的饼图,显示不同新闻来源的占比
df["source"].value_counts().plot.pie()
plt.show()

这样就可以使用pandas、numpy、matplotlib等库来对数据进行分析和可视化,从而获得有用的信息和洞察。

结论

本文介绍了如何使用Python和sqlite3构建一个轻量级的数据采集和分析平台,它可以让我们方便地爬取、存储、查询、处理和展示数据,而无需安装复杂的数据库服务器或其他软件。我们使用Python作为主要的编程语言,它是一种简洁、优雅、易学、功能强大的语言,广泛应用于数据科学领域。我们使用sqlite3作为主要的数据库系统,它是一种嵌入式的关系型数据库,它可以将整个数据库存储在一个单独的文件中,而无需配置或管理任何服务器。我们还使用一些Python的第三方库,如requests、BeautifulSoup、pandas、numpy、matplotlib等,来辅助我们进行数据采集和分析。
本文只是一个简单的示例,不涉及太多的细节和高级功能,如果你想深入学习,请参考相关的文档和教程。本文希望能够给你一些启发和帮助,让你能够利用Python和sqlite3来实现你自己的数据采集和分析项目。感谢你的阅读!

相关文章
|
7天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
11天前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
10天前
|
存储 数据库 数据库管理
SQLite中的B-Tree实现细节分析
SQLite在存储在外部的数据库是以B-Tree来组织的。
|
8天前
|
开发框架 前端开发 JavaScript
利用Python和Flask构建轻量级Web应用的实战指南
利用Python和Flask构建轻量级Web应用的实战指南
25 2
|
9天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
16天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
59 7
|
15天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
25 3
|
16天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
31 2
|
17天前
|
JSON API 数据格式
如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架
本文介绍了如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架,适合小型项目和微服务。文章从环境准备、创建基本Flask应用、定义资源和路由、请求和响应处理、错误处理等方面进行了详细说明,并提供了示例代码。通过这些步骤,读者可以快速上手构建自己的RESTful API。
25 2
|
21天前
|
数据采集 机器学习/深度学习 搜索推荐
Python自动化:关键词密度分析与搜索引擎优化
Python自动化:关键词密度分析与搜索引擎优化