【负荷预测】基于VMD-SSA-LSTM光伏功率预测【可以换数据变为其他负荷等预测】(Matlab代码实现)

简介: 【负荷预测】基于VMD-SSA-LSTM光伏功率预测【可以换数据变为其他负荷等预测】(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


1.1 变分模态分解(VMD)


1.2 麻雀搜索算法(SSA)


1.3 长短期记忆神经网络(LSTM)


1.4 VMD-SSA-LSTM 模型预测流程


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码、数据、文章讲解


💥1 概述

参考文献:


89c011b072404610a2ad35f32013628b.png


知识回顾:基于EMD-PCA-LSTM的光伏功率预测模型


c0ea27c6facb402c9881749b4f1a43a4.png


摘要: 提出了变分模态分解(VMD)和麻雀搜索算法(SSA)与长短期记忆神经网络(LSTM)相耦合,建立了光伏预测模型(VMD-SSA-LSTM)。首先利用VMD对历史负荷数据进行分解,然后依据SSA对LSTM的参数进行寻优,并将分解出的负荷分量输入到LSTM神经网络,最后将每个分量的预测值相加,得到光伏负荷预测值,结果表明,与LSTM、VMD-LSTM模型相比,VMD-SSA-LSTM模型的预测精度更高,为开展月径流预测工作提供了一种新的选择。【换上其他数据,可以预测其他负荷预测等】重点学习方法。


1.1 变分模态分解(VMD)

变分模态分解(VMD)是一个完全非递归分解模型[4],该模型采用一种自适应的变分方法,可自适应确定相关频带,并同时估计相应模态,从而适当平衡它们之间的误差。VMD 的目标是将实值输入信号f(t)分解为离散的子信号(模态)μk ,假设每个模态uk 在频率中心wk 附近大部分均为紧凑的。


VMD将f(t) 分解为k 个子序列具体步骤如下。


步骤1 对于每个模态μk ,通过希尔伯特变换计算相关的解析信号并构造出频谱。


步骤2 通过各自估计的中心频率,将模态的频谱移至到基带。


步骤3 通过解调信号的高斯平滑度,即梯度的L 2 范数来估计带宽。产生的约束变分问题为:


288ebd3629aa4c6aa9598d4c97aa5ab9.png


1.2 麻雀搜索算法(SSA)

麻雀搜索算法(SSA)是一种新型的智能优化算法,其思路源于麻雀的觅食行为和反捕行为。


SSA 优化过程具体描述为:① 发现者位置 X t+1 i,j 更新公式为:




SSA 算法步骤如下。


步骤1 初始化种群、捕食者和加入者的比例、迭代次数。


步骤2计算出适应度值﹐再从大到小排序。

步骤3更新发现者位置。

步骤4更新加人者位置。

步骤5更新警戒者位置(意识到危险的麻雀)。


步骤6计算适应度值并更新麻雀位置。


步骤7若满足要求,输出结果;否则,重复步骤2~6。


1.3 长短期记忆神经网络(LSTM)

LSTM内部包括输入层、隐含层、循环层、输出层。为解决循环神经网络(RNN)的梯度消失和梯度爆炸问题,在隐含层中增加记忆单元状态。隐含层中建立了控制单元分别为输入门、遗忘门和输出门。输入门的作用是将新的信息选择性的记录到细胞状态中,遗忘门是将细胞中的信息选择性遗忘,输出门是将储存的信息带到下一个神经元中。


5f9f42f24b3d4eb890fbbb27d2d4cbf7.png


式(5)~(11)即为LSTM向前传播的过程,再由预测值与实际值之间的误差进行反向计算,更新权值和阈值,直到满足最大迭代次数。


1.4 VMD-SSA-LSTM 模型预测流程

VMD、SSA和 LSTM相耦合成VMD-SSA-LSTM月径流预测模型,具体预测步骤如下。

步骤1选定前n个负荷信息作为模型输入。


步骤2利用VMD 方法对原始的负荷序列进行分解,得到k个分量。


步骤3首先设置麻雀种群规模N、最大迭代次数M、参数范围(隐含层神经元数H、训练次数E和学习率z)的搜索范围,然后选用均方误差(M Msz)作为优化算法中的目标函数,最后建立起麻雀搜索算法与长短期神经网络相耦合模型(SSA-LSTM)。

步骤4对每个分量分别输入SSA-LSTM预测模型,得到k个预测模型。

步骤5最后将k个预测模型的预测值对应的相加,得到负荷的预测值。


📚2 运行结果




🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]孙国梁,李保健,徐冬梅等.基于VMD-SSA-LSTM的月径流预测模型及应用[J].水电能源科学,2022,40(05):18-21.


[2]张雲钦,程起泽,蒋文杰,刘晓峰,沈亮,陈泽华.基于EMD-PCA-LSTM的光伏功率预测模型[J].太阳能学报,2021,42(09):62-69.DOI:10.19912/j.0254-0096.tynxb.2019-0817.


🌈4 Matlab代码、数据、文章讲解


相关文章
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
6月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
116 6
|
6月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真
摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。
|
5月前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。
|
7月前
|
机器学习/深度学习 存储 算法
基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络
该文介绍了使用MATLAB2022A进行时间序列预测的算法,结合CNN和RNN(LSTM或GRU)处理数据。CNN提取局部特征,RNN处理序列依赖。LSTM通过门控机制擅长长序列,GRU则更为简洁、高效。程序展示了训练损失、精度随epoch变化的曲线,并对训练及测试数据进行预测,评估预测误差。
|
7月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
|
7月前
|
数据挖掘
考虑时空相关性的风电功率预测误差建模与分析(matlab程序)
考虑时空相关性的风电功率预测误差建模与分析(matlab程序)

热门文章

最新文章