[ros robot] --- 机器人系统仿真

简介: [ros robot] --- 机器人系统仿真

1 机器人系统仿真概念

机器人系统仿真:是通过计算机对实体机器人系统进行模拟的技术,在 ROS 中,仿真实现涉及的内容主要有三:对机器人建模(URDF)、创建仿真环境(Gazebo)以及感知环境(Rviz)等系统性实现。

2 机器人系统仿真相关组件

机器人的系统仿真是一种集成实现,主要包含三部分:

URDF 用于创建机器人模型

Gzebo 用于搭建仿真环境

Rviz 图形化的显示机器人各种传感器感知到的环境信息

三者应用中,只是创建 URDF 意义不大,一般需要结合 Gazebo 或 Rviz 使用,在 Gazebo 或 Rviz 中可以将 URDF 文件解析为图形化的机器人模型,一般的使用组合为:

如果非仿真环境,那么使用 URDF 结合 Rviz 直接显示感知的真实环境信息

如果是仿真环境,那么需要使用 URDF 结合 Gazebo 搭建仿真环境,并结合 Rviz 显示感知的虚拟环境信息

2.1 URDF

URDF是 Unified Robot Description Format 的首字母缩写,直译为统一(标准化)机器人描述格式,可以以一种 XML 的方式描述机器人的部分结构,比如底盘、摄像头、激光雷达、机械臂以及不同关节的自由度…,该文件可以被 C++ 内置的解释器转换成可视化的机器人模型,是 ROS 中实现机器人仿真的重要组件

2.2 rviz

RViz 是 ROS Visualization Tool 的首字母缩写,直译为ROS的三维可视化工具。它的主要目的是以三维方式显示ROS消息,可以将 数据进行可视化表达。例如:可以显示机器人模型,可以无需编程就能表达激光测距仪(LRF)传感器中的传感 器到障碍物的距离,RealSense、Kinect或Xtion等三维距离传感器的点云数据(PCD, Point Cloud Data),从相机获取的图像值等

2.3 gazebo

Gazebo是一款3D动态模拟器,用于显示机器人模型并创建仿真环境,能够在复杂的室内和室外环境中准确有效地模拟机器人。与游戏引擎提供高保真度的视觉模拟类似,Gazebo提供高保真度的物理模拟,其提供一整套传感器模型,以及对用户和程序非常友好的交互方式。

3 urdf使用练习

3.1 需求描述:

创建一个四轮圆柱状机器人模型,机器人参数如下,底盘为圆柱状,半径 10cm,高 8cm,四轮由两个驱动轮和两个万向支撑轮组成,两个驱动轮半径为 3.25cm,轮胎宽度1.5cm,两个万向轮为球状,半径 0.75cm,底盘离地间距为 1.5cm(与万向轮直径一致)

3.2 实现步骤

1 新建工作空间

mkdir ~/work/sim_ws/src
catkin_create_pkg learing_urdf urdf xacro
cd urdf 
mkdir urdf
mkdir config
mkdir launch

2 编写urdf文件【具体语法自行百度】

<robot name="mycar">
    <!-- 设置 base_footprint  -->
    <link name="base_footprint">
        <visual>
            <geometry>
                <sphere radius="0.001" />
            </geometry>
        </visual>
    </link>
    <!-- 添加底盘 -->
    <!-- 
        参数
            形状:圆柱 
            半径:10     cm 
            高度:8      cm 
            离地:1.5    cm
    -->
    <link name="base_link">
        <visual>
            <geometry>
                <cylinder radius="0.1" length="0.08" />
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="yellow">
                <color rgba="0.8 0.3 0.1 0.5" />
            </material>
        </visual>
    </link>
    <joint name="base_link2base_footprint" type="fixed">
        <parent link="base_footprint" />
        <child link="base_link"/>
        <origin xyz="0 0 0.055" />
    </joint>
    <!-- 添加驱动轮 -->
    <!--
        驱动轮是侧翻的圆柱
        参数
            半径: 3.25 cm
            宽度: 1.5  cm
            颜色: 黑色
        关节设置:
            x = 0
            y = 底盘的半径 + 轮胎宽度 / 2
            z = 离地间距 + 底盘长度 / 2 - 轮胎半径 = 1.5 + 4 - 3.25 = 2.25(cm)
            axis = 0 1 0
    -->
    <link name="left_wheel">
        <visual>
            <geometry>
                <cylinder radius="0.0325" length="0.015" />
            </geometry>
            <origin xyz="0 0 0" rpy="1.5705 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
    </link>
    <joint name="left_wheel2base_link" type="continuous">
        <parent link="base_link" />
        <child link="left_wheel" />
        <origin xyz="0 0.1 -0.0225" />
        <axis xyz="0 1 0" />
    </joint>
    <link name="right_wheel">
        <visual>
            <geometry>
                <cylinder radius="0.0325" length="0.015" />
            </geometry>
            <origin xyz="0 0 0" rpy="1.5705 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
    </link>
    <joint name="right_wheel2base_link" type="continuous">
        <parent link="base_link" />
        <child link="right_wheel" />
        <origin xyz="0 -0.1 -0.0225" />
        <axis xyz="0 1 0" />
    </joint>
    <!-- 添加万向轮(支撑轮) -->
    <!--
        参数
            形状: 球体
            半径: 0.75 cm
            颜色: 黑色
        关节设置:
            x = 自定义(底盘半径 - 万向轮半径) = 0.1 - 0.0075 = 0.0925(cm)
            y = 0
            z = 底盘长度 / 2 + 离地间距 / 2 = 0.08 / 2 + 0.015 / 2 = 0.0475 
            axis= 1 1 1
    -->
    <link name="front_wheel">
        <visual>
            <geometry>
                <sphere radius="0.0075" />
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
    </link>
    <joint name="front_wheel2base_link" type="continuous">
        <parent link="base_link" />
        <child link="front_wheel" />
        <origin xyz="0.0925 0 -0.0475" />
        <axis xyz="1 1 1" />
    </joint>
    <link name="back_wheel">
        <visual>
            <geometry>
                <sphere radius="0.0075" />
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
    </link>
    <joint name="back_wheel2base_link" type="continuous">
        <parent link="base_link" />
        <child link="back_wheel" />
        <origin xyz="-0.0925 0 -0.0475" />
        <axis xyz="1 1 1" />
    </joint>
</robot>

3 编写launch文件

<launch>
    <!-- 将 urdf 文件内容设置进参数服务器 -->
    <param name="robot_description" textfile="$(find learn_urdf)/urdf/urdf/demo02_myrobot.urdf" />
    <!-- 启动 rivz -->
    <node pkg="rviz" type="rviz" name="rviz_test" />
    <!-- 启动机器人状态和关节状态发布节点 -->
    <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" />
    <node pkg="joint_state_publisher" type="joint_state_publisher" name="joint_state_publisher" />
    <!-- 启动图形化的控制关节运动节点 -->
    <node pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" name="joint_state_publisher_gui" />
</launch>

4 运行

遇到的错误

1.

ERROR:cannot launch node of type [joint_state_publisher_gui/joint_state_publisher_gui]: joint_state_publisher_gui

解决方法:

sudo apt-get install ros-[rosversion]-joint-state-publisher-gui

[joint_state_publisher-4] process has died [pid 9914, exit code 1, cmd /opt/ros/melodic/lib/joint_state_publisher/joint_state_publisher __name:=joint_state_publisher __log:=/home/titan/.ros/log/bbcda9c6-cabb-11ec-abef-48b02d4db752/joint_state_publisher-4.log].
log file: /home/titan/.ros/log/bbcda9c6-cabb-11ec-abef-48b02d4db752/joint_state_publisher-4*.log

解决方法:

5 将rviz保存为config文件,之后每次打开就直接可以看到配置好的,不需要每次手动修改

4 xacro — urdf优化

4.1 xacro是什么

概念:

Xacro 是 XML Macros 的缩写,Xacro 是一种 XML 宏语言,是可编程的 XML。

原理:

Xacro 可以声明变量,可以通过数学运算求解,使用流程控制控制执行顺序,还可以通过类似函数的实现,封装固定的逻辑,将逻辑中需要的可变的数据以参数的方式暴露出去,从而提高代码复用率以及程序的安全性。

作用:

较之于纯粹的 URDF 实现,可以编写更安全、精简、易读性更强的机器人模型文件,且可以提高编写效率。

4.2 xacro文件与urdf文件对比

4.3 用xacro实现3.1的需求

1 新建工作空间,同上

2 编写xacro文件

<!--
    使用 xacro 优化 URDF 版的小车底盘实现:
    实现思路:
    1.将一些常量、变量封装为 xacro:property
      比如:PI 值、小车底盘半径、离地间距、车轮半径、宽度 ....
    2.使用 宏 封装驱动轮以及支撑轮实现,调用相关宏生成驱动轮与支撑轮
-->
<!-- 根标签,必须声明 xmlns:xacro -->
<robot name="my_base" xmlns:xacro="http://www.ros.org/wiki/xacro">
    <!-- 封装变量、常量 -->
    <xacro:property name="PI" value="3.141"/>
    <!-- 宏:黑色设置 -->
    <material name="black">
        <color rgba="0.0 0.0 0.0 1.0" />
    </material>
    <!-- 底盘属性 -->
    <xacro:property name="base_footprint_radius" value="0.001" /> <!-- base_footprint 半径  -->
    <xacro:property name="base_link_radius" value="0.1" /> <!-- base_link 半径 -->
    <xacro:property name="base_link_length" value="0.08" /> <!-- base_link 长 -->
    <xacro:property name="earth_space" value="0.015" /> <!-- 离地间距 -->
    <!-- 底盘 -->
    <link name="base_footprint">
      <visual>
        <geometry>
          <sphere radius="${base_footprint_radius}" />
        </geometry>
      </visual>
    </link>
    <link name="base_link">
      <visual>
        <geometry>
          <cylinder radius="${base_link_radius}" length="${base_link_length}" />
        </geometry>
        <origin xyz="0 0 0" rpy="0 0 0" />
        <material name="yellow">
          <color rgba="0.5 0.3 0.0 0.5" />
        </material>
      </visual>
    </link>
    <joint name="base_link2base_footprint" type="fixed">
      <parent link="base_footprint" />
      <child link="base_link" />
      <origin xyz="0 0 ${earth_space + base_link_length / 2 }" />
    </joint>
    <!-- 驱动轮 -->
    <!-- 驱动轮属性 -->
    <xacro:property name="wheel_radius" value="0.0325" /><!-- 半径 -->
    <xacro:property name="wheel_length" value="0.015" /><!-- 宽度 -->
    <!-- 驱动轮宏实现 -->
    <xacro:macro name="add_wheels" params="name flag">
      <link name="${name}_wheel">
        <visual>
          <geometry>
            <cylinder radius="${wheel_radius}" length="${wheel_length}" />
          </geometry>
          <origin xyz="0.0 0.0 0.0" rpy="${PI / 2} 0.0 0.0" />
          <material name="black" />
        </visual>
      </link>
      <joint name="${name}_wheel2base_link" type="continuous">
        <parent link="base_link" />
        <child link="${name}_wheel" />
        <origin xyz="0 ${flag * base_link_radius} ${-(earth_space + base_link_length / 2 - wheel_radius) }" />
        <axis xyz="0 1 0" />
      </joint>
    </xacro:macro>
    <xacro:add_wheels name="left" flag="1" />
    <xacro:add_wheels name="right" flag="-1" />
    <!-- 支撑轮 -->
    <!-- 支撑轮属性 -->
    <xacro:property name="support_wheel_radius" value="0.0075" /> <!-- 支撑轮半径 -->
    <!-- 支撑轮宏 -->
    <xacro:macro name="add_support_wheel" params="name flag" >
      <link name="${name}_wheel">
        <visual>
            <geometry>
                <sphere radius="${support_wheel_radius}" />
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="black" />
        </visual>
      </link>
      <joint name="${name}_wheel2base_link" type="continuous">
          <parent link="base_link" />
          <child link="${name}_wheel" />
          <origin xyz="${flag * (base_link_radius - support_wheel_radius)} 0 ${-(base_link_length / 2 + earth_space / 2)}" />
          <axis xyz="1 1 1" />
      </joint>
    </xacro:macro>
    <xacro:add_support_wheel name="front" flag="1" />
    <xacro:add_support_wheel name="back" flag="-1" />
</robot>

3 编写launch文件

<launch>
    <param name="robot_description" command="$(find xacro)/xacro $(find learning_urdf)/urdf/demo_myrobotxacro.xacro" />
    <node pkg="rviz" type="rviz" name="rviz" />
    <node pkg="joint_state_publisher" type="joint_state_publisher" name="joint_state_publisher" output="screen" />
    <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" output="screen" />
    <node pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" name="joint_state_publisher_gui" output="screen" />
</launch>

4 运行

roslaunch learing_urdf demo_myrobotxacro.launch

5 将rviz保存为config文件


相关实践学习
Docker镜像管理快速入门
本教程将介绍如何使用Docker构建镜像,并通过阿里云镜像服务分发到ECS服务器,运行该镜像。
阿里云资源编排ROS使用教程
资源编排(Resource Orchestration)是一种简单易用的云计算资源管理和自动化运维服务。用户通过模板描述多个云计算资源的依赖关系、配置等,并自动完成所有资源的创建和配置,以达到自动化部署、运维等目的。编排模板同时也是一种标准化的资源和应用交付方式,并且可以随时编辑修改,使基础设施即代码(Infrastructure as Code)成为可能。 产品详情:https://www.aliyun.com/product/ros/
目录
相关文章
|
3月前
|
机器人 PHP
QQ云端机器人登录系统php源码
QQ云端机器人登录系统php源码
184 4
|
5天前
|
人工智能 安全 机器人
AI电销机器人系统源码部署:freeswitch安装Windows
在Windows上安装FreeSWITCH:访问官网下载安装程序,运行并按提示安装;选择安装路径和组件;等待安装完成;配置FreeSWITCH,修改设置;启动服务;测试其功能;如遇问题,参考官方文档或进行调试故障排除。记得定期更新维护以保证稳定安全。
|
1月前
|
网络协议 机器人 中间件
单片机和FreeRTOS上跑机器人ROS的应用
单片机和FreeRTOS上跑机器人ROS的应用
67 0
|
6月前
|
算法 机器人
秒合约期权机器人开发/秒合约系统/币币合约/技术开发应用
秒合约期权机器人开发/秒合约系统/币币合约/技术开发应用
|
2月前
|
传感器 监控 安全
植保机器人,尤其是无人机喷雾系统
植保机器人,尤其是无人机喷雾系统
23 1
|
3月前
|
传感器 机器人 C++
ROS 2机器人编程实战:基于现代C++和Python 3实现简单机器人项目
ROS 2机器人编程实战:基于现代C++和Python 3实现简单机器人项目
188 0
|
4月前
|
机器人 TensorFlow 算法框架/工具
量化交易机器人系统开发详细策略/需求步骤/逻辑方案/源码设计
auto nhwc_data = nhwc_Tensor->host<float>(); auto nhwc_size = nhwc_Tensor->size(); ::memcpy(nhwc_data, image.data, nhwc_size);
|
4月前
|
机器学习/深度学习 传感器 前端开发
重磅发布!伟景智能推出人形机器人专用立体视觉系统ViEye
伟景智能凭借在工业级立体相机和人形机器人领域多年的技术积累和产品研发,推出了专为人形机器人设计的专业视觉系统——ViEye。搭载这一视觉系统后,伟景智能的人形机器人操作系统实现了“眼到手到”的全面覆盖,完美结合了平面视觉、立体视觉和机械手控制。该系统旨在为人形机器人提供精准且全面的视觉信息,解决了机器人“脑、眼、手”协同融合的难题,为机器人赋予了高精度的感知能力,使其能够更有效地应用于各种场景。这一创新将有助于提升人形机器人在实际应用中的性能和效果。
|
5月前
|
传感器 机器人 C++
机器人操作系统ROS 编程开发--详细总结
最近工作涉及到自动驾驶的,需要学习ROS,学习中总结了一些知识点,分享给大家。 机器人操作系统ROS,是一种分布式处理框架(又名Nodes),ROS常用C++和python编程语言开发;(这里项目开发采用C++ 11版本)。ROS的点对点设计以及服务和节点管理器等机制,可以分散由计算机视觉和语音识别等功能带来的实时计算压力,能够适应多机器人遇到的挑战。ROS免费并且开源。
326 0
|
2月前
|
传感器 人工智能 监控
智能耕耘机器人
智能耕耘机器人
43 3

热门文章

最新文章

推荐镜像

更多