[ROS基础] --- TF坐标转换

本文涉及的产品
资源编排,不限时长
简介: [ROS基础] --- TF坐标转换

1 TF坐标转换概念

tf:TransForm Frame,坐标变换

坐标系:ROS 中是通过坐标系统开标定物体的,确切的将是通过右手坐标系来标定的。

TF左边转换作用:在 ROS 中用于实现不同坐标系之间的点或向量的转换。

说明

在ROS中坐标变换最初对应的是tf,不过在 hydro 版本开始, tf 被弃用,迁移到 tf2,后者更为简洁高效,tf2对应的常用功能包有:

tf2_geometry_msgs:可以将ROS消息转换成tf2消息。

tf2: 封装了坐标变换的常用消息。

tf2_ros:为tf2提供了roscpp和rospy绑定,封装了坐标变换常用的API。

2 坐标msg消息

订阅发布模型中数据载体 msg 是一个重要实现,首先需要了解一下,在坐标转换实现中常用的 msg:geometry_msgs/TransformStamped和geometry_msgs/PointStamped。前者用于传输坐标系相关位置信息,后者用于传输某个坐标系内坐标点的信息。在坐标变换中,频繁的需要使用到坐标系的相对关系以及坐标点信息。

2.1 1.geometry_msgs/TransformStamped

std_msgs/Header header                     #头信息
  uint32 seq                                #|-- 序列号
  time stamp                                #|-- 时间戳
  string frame_id                            #|-- 坐标 ID
string child_frame_id                    #子坐标系的 id
geometry_msgs/Transform transform        #坐标信息
  geometry_msgs/Vector3 translation        #偏移量
    float64 x                                #|-- X 方向的偏移量
    float64 y                                #|-- Y 方向的偏移量
    float64 z                                #|-- Z 方向上的偏移量
  geometry_msgs/Quaternion rotation        #四元数
    float64 x                                
    float64 y                                
    float64 z                                
    float64 w

2.2 2.geometry_msgs/PointStamped

std_msgs/Header header                    #头
  uint32 seq                                #|-- 序号
  time stamp                                #|-- 时间戳
  string frame_id                            #|-- 所属坐标系的 id
geometry_msgs/Point point                #点坐标
  float64 x                                    #|-- x y z 坐标
  float64 y
  float64 z

3 静态坐标变换

所谓静态坐标变换,是指两个坐标系之间的相对位置是固定的。

需求描述:

现有一机器人模型,核心构成包含主体与雷达,各对应一坐标系,坐标系的原点分别位于主体与雷达的物理中心,已知雷达原点相对于主体原点位移关系如下: x 0.2 y0.0 z0.5。当前雷达检测到一障碍物,在雷达坐标系中障碍物的坐标为 (2.0 3.0 5.0),请问,该障碍物相对于主体的坐标是多少?

实现分析:

坐标系相对关系,可以通过发布方发布

订阅方,订阅到发布的坐标系相对关系,再传入坐标点信息(可以写死),然后借助于 tf 实现坐标变换,并将结果输出

程序实现:

1.创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs

2.发布方 tf_pub.cpp

/* 
    静态坐标变换发布方:
        发布关于 laser 坐标系的位置信息 
    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建静态坐标转换广播器
        4.创建坐标系信息
        5.广播器发布坐标系信息
        6.spin()
*/
// 1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/static_transform_broadcaster.h"
#include "geometry_msgs/TransformStamped.h"
#include "tf2/LinearMath/Quaternion.h"
int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"static_brocast");
    // 3.创建静态坐标转换广播器
    tf2_ros::StaticTransformBroadcaster broadcaster;
    // 4.创建坐标系信息
    geometry_msgs::TransformStamped ts;
    //----设置头信息
    ts.header.seq = 100;
    ts.header.stamp = ros::Time::now();
    ts.header.frame_id = "base_link";
    //----设置子级坐标系
    ts.child_frame_id = "laser";
    //----设置子级相对于父级的偏移量
    ts.transform.translation.x = 0.2;
    ts.transform.translation.y = 0.0;
    ts.transform.translation.z = 0.5;
    //----设置四元数:将 欧拉角数据转换成四元数
    tf2::Quaternion qtn;
    qtn.setRPY(0,0,0);
    ts.transform.rotation.x = qtn.getX();
    ts.transform.rotation.y = qtn.getY();
    ts.transform.rotation.z = qtn.getZ();
    ts.transform.rotation.w = qtn.getW();
    // 5.广播器发布坐标系信息
    broadcaster.sendTransform(ts);
    ros::spin();
    return 0;
}

3.订阅方tf_sub.cpp

/*  
    订阅坐标系信息,生成一个相对于 子级坐标系的坐标点数据,转换成父级坐标系中的坐标点
    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建 TF 订阅节点
        4.生成一个坐标点(相对于子级坐标系)
        5.转换坐标点(相对于父级坐标系)
        6.spin()
*/
//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "tf2_ros/buffer.h"
#include "geometry_msgs/PointStamped.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h" //注意: 调用 transform 必须包含该头文件
int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"tf_sub");
    ros::NodeHandle nh;
    // 3.创建 TF 订阅节点
    tf2_ros::Buffer buffer;
    tf2_ros::TransformListener listener(buffer);
    ros::Rate r(1);
    while (ros::ok())
    {
    // 4.生成一个坐标点(相对于子级坐标系)
        geometry_msgs::PointStamped point_laser;
        point_laser.header.frame_id = "laser";
        point_laser.header.stamp = ros::Time::now();
        point_laser.point.x = 1;
        point_laser.point.y = 2;
        point_laser.point.z = 7.3;
    // 5.转换坐标点(相对于父级坐标系)
        //新建一个坐标点,用于接收转换结果  
        //--------------使用 try 语句或休眠,否则可能由于缓存接收延迟而导致坐标转换失败------------------------
        try
        {
            geometry_msgs::PointStamped point_base;
            point_base = buffer.transform(point_laser,"base_link");
            ROS_INFO("转换后的数据:(%.2f,%.2f,%.2f),参考的坐标系是:",point_base.point.x,point_base.point.y,point_base.point.z,point_base.header.frame_id.c_str());
        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("程序异常.....");
        }
        r.sleep();  
        ros::spinOnce();
    }
    return 0;
}

4 动态坐标变换

所谓动态坐标变换,是指两个坐标系之间的相对位置是变化的。

需求描述:

启动 turtlesim_node,该节点中窗体有一个世界坐标系(左下角为坐标系原点),乌龟是另一个坐标系,键盘控制乌龟运动,将两个坐标系的相对位置动态发布。

实现分析:

乌龟本身不但可以看作坐标系,也是世界坐标系中的一个坐标点

订阅 turtle1/pose,可以获取乌龟在世界坐标系的 x坐标、y坐标、偏移量以及线速度和角速度

将 pose 信息转换成 坐标系相对信息并发布

程序实现:

1.创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs、turtlesim

2.发布方

/*  
    动态的坐标系相对姿态发布(一个坐标系相对于另一个坐标系的相对姿态是不断变动的)
    需求: 启动 turtlesim_node,该节点中窗体有一个世界坐标系(左下角为坐标系原点),乌龟是另一个坐标系,键盘
    控制乌龟运动,将两个坐标系的相对位置动态发布
    实现分析:
        1.乌龟本身不但可以看作坐标系,也是世界坐标系中的一个坐标点
        2.订阅 turtle1/pose,可以获取乌龟在世界坐标系的 x坐标、y坐标、偏移量以及线速度和角速度
        3.将 pose 信息转换成 坐标系相对信息并发布
    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建 ROS 句柄
        4.创建订阅对象
        5.回调函数处理订阅到的数据(实现TF广播)
            5-1.创建 TF 广播器
            5-2.创建 广播的数据(通过 pose 设置)
            5-3.广播器发布数据
        6.spin
*/
// 1.包含头文件
#include "ros/ros.h"
#include "turtlesim/Pose.h"
#include "tf2_ros/transform_broadcaster.h"
#include "geometry_msgs/TransformStamped.h"
#include "tf2/LinearMath/Quaternion.h"
void doPose(const turtlesim::Pose::ConstPtr& pose){
    //  5-1.创建 TF 广播器
    static tf2_ros::TransformBroadcaster broadcaster;
    //  5-2.创建 广播的数据(通过 pose 设置)
    geometry_msgs::TransformStamped tfs;
    //  |----头设置
    tfs.header.frame_id = "world";
    tfs.header.stamp = ros::Time::now();
    //  |----坐标系 ID
    tfs.child_frame_id = "turtle1";
    //  |----坐标系相对信息设置
    tfs.transform.translation.x = pose->x;
    tfs.transform.translation.y = pose->y;
    tfs.transform.translation.z = 0.0; // 二维实现,pose 中没有z,z 是 0
    //  |--------- 四元数设置
    tf2::Quaternion qtn;
    qtn.setRPY(0,0,pose->theta);
    tfs.transform.rotation.x = qtn.getX();
    tfs.transform.rotation.y = qtn.getY();
    tfs.transform.rotation.z = qtn.getZ();
    tfs.transform.rotation.w = qtn.getW();
    //  5-3.广播器发布数据
    broadcaster.sendTransform(tfs);
}
int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"dynamic_tf_pub");
    // 3.创建 ROS 句柄
    ros::NodeHandle nh;
    // 4.创建订阅对象
    ros::Subscriber sub = nh.subscribe<turtlesim::Pose>("/turtle1/pose",1000,doPose);
    //     5.回调函数处理订阅到的数据(实现TF广播)
    //        
    // 6.spin
    ros::spin();
    return 0;
}

3.订阅方

//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "tf2_ros/buffer.h"
#include "geometry_msgs/PointStamped.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h" //注意: 调用 transform 必须包含该头文件
int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"dynamic_tf_sub");
    ros::NodeHandle nh;
    // 3.创建 TF 订阅节点
    tf2_ros::Buffer buffer;
    tf2_ros::TransformListener listener(buffer);
    ros::Rate r(1);
    while (ros::ok())
    {
    // 4.生成一个坐标点(相对于子级坐标系)
        geometry_msgs::PointStamped point_laser;
        point_laser.header.frame_id = "turtle1";
        point_laser.header.stamp = ros::Time();
        point_laser.point.x = 1;
        point_laser.point.y = 1;
        point_laser.point.z = 0;
    // 5.转换坐标点(相对于父级坐标系)
        //新建一个坐标点,用于接收转换结果  
        //--------------使用 try 语句或休眠,否则可能由于缓存接收延迟而导致坐标转换失败------------------------
        try
        {
            geometry_msgs::PointStamped point_base;
            point_base = buffer.transform(point_laser,"world");
            ROS_INFO("坐标点相对于 world 的坐标为:(%.2f,%.2f,%.2f)",point_base.point.x,point_base.point.y,point_base.point.z);
        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("程序异常:%s",e.what());
        }
        r.sleep();  
        ros::spinOnce();
    }
    return 0;
}

5 TF2与TF

5.1 TF2与TF比较_简介

TF2已经替换了TF,TF2是TF的超集,建议学习 TF2 而非 TF

TF2 功能包的增强了内聚性,TF 与 TF2 所依赖的功能包是不同的,TF 对应的是tf包,TF2 对应的是tf2和tf2_ros包,在 TF2 中不同类型的 API 实现做了分包处理。

TF2 实现效率更高,比如在:TF2 的静态坐标实现、TF2 坐标变换监听器中的 Buffer 实现等

5.2 TF2与TF比较_静态坐标变换演示

接下来,我们通过静态坐标变换来演示TF2的实现效率。

5.2.1 启动 TF2 与 TF 两个版本的静态坐标变换

TF2 版静态坐标变换:rosrun tf2_ros static_transform_publisher 0 0 0 0 0 0 /base_link /laser

TF 版静态坐标变换:rosrun tf static_transform_publisher 0 0 0 0 0 0 /base_link /laser 100

会发现,TF 版本的启动中最后多一个参数,该参数是指定发布频率

5.2.2 运行结果比对

使用rostopic查看话题,包含/tf与/tf_static, 前者是 TF 发布的话题,后者是 TF2 发布的话题,分别调用命令打印二者的话题消息

rostopic echo /tf: 当前会循环输出坐标系信息

rostopic echo /tf_static: 坐标系信息只有一次

5.3 结论

如果是静态坐标转换,那么不同坐标系之间的相对状态是固定的,既然是固定的,那么没有必要重复发布坐标系的转换消息,很显然的,tf2 实现较之于 tf 更为高效

相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
阿里云资源编排ROS使用教程
资源编排(Resource Orchestration)是一种简单易用的云计算资源管理和自动化运维服务。用户通过模板描述多个云计算资源的依赖关系、配置等,并自动完成所有资源的创建和配置,以达到自动化部署、运维等目的。编排模板同时也是一种标准化的资源和应用交付方式,并且可以随时编辑修改,使基础设施即代码(Infrastructure as Code)成为可能。 产品详情:https://www.aliyun.com/product/ros/
相关文章
|
4月前
|
缓存 数据可视化 机器人
07 ROS的TF坐标管理工具
本文详细介绍了ROS(机器人操作系统)中TF(Transform)坐标管理工具的使用方法,包括如何监听和广播坐标变换消息,使用相关命令行工具查看TF关系,以及如何通过编写节点代码来创建TF广播器和监听器,并展示了如何在launch文件中配置TF相关的节点。
127 0
|
算法 机器人 API
【ROS】TF2坐标转换及实战示例
ROS中提供了坐标转换的软件包 Transform Frame TF的作用是ROS中实现不同坐标点/向量的转换。
728 0
|
C++
ROS学习-写一个tf broadcaster(C++)
ROS学习-写一个tf broadcaster(C++)
195 0
ROS学习-写一个tf broadcaster(C++)
|
数据可视化 Ubuntu 机器人
ROS学习-tf介绍
ROS学习-tf介绍
283 0
ROS学习-tf介绍
|
传感器 存储 机器人
ROS TF 将传感器数据转换为机器人坐标系下
ROS TF 将传感器数据转换为机器人坐标系下
ROS TF 将传感器数据转换为机器人坐标系下
|
XML C++ 数据格式
【古月21讲】ROS入门系列(4)——参数使用与编程方法、坐标管理系统、tf坐标系广播与监听的编程实现、launch启动文件的使用方法
【古月21讲】ROS入门系列(4)——参数使用与编程方法、坐标管理系统、tf坐标系广播与监听的编程实现、launch启动文件的使用方法
282 0
【古月21讲】ROS入门系列(4)——参数使用与编程方法、坐标管理系统、tf坐标系广播与监听的编程实现、launch启动文件的使用方法
|
2月前
|
Ubuntu 机器人 Linux
|
29天前
|
自动驾驶 安全 机器人
ROS2:从初识到深入,探索机器人操作系统的进化之路
前言 最近开始接触到基于DDS的这个系统,是在稚晖君的机器人项目中了解和认识到。于是便开始自己买书学习起来,感觉挺有意思的,但是只是单纯的看书籍,总会显得枯燥无味,于是自己又开始在网上找了一些视频教程结合书籍一起来看,便让我对ROS系统有了更深的认识和理解。 ROS的发展历程 ROS诞生于2007年的斯坦福大学,这是早期PR2机器人的原型,这个项目很快被一家商业公司Willow Garage看中,类似现在的风险投资一样,他们投了一大笔钱给这群年轻人,PR2机器人在资本的助推下成功诞生。 2010年,随着PR2机器人的发布,其中的软件正式确定了名称,就叫做机器人操作系统,Robot Op
70 14
|
1月前
|
XML 算法 自动驾驶
ROS进阶:使用URDF和Xacro构建差速轮式机器人模型
【11月更文挑战第7天】本篇文章介绍的是ROS高效进阶内容,使用URDF 语言(xml格式)做一个差速轮式机器人模型,并使用URDF的增强版xacro,对机器人模型文件进行二次优化。
|
1月前
|
自动驾驶 安全 机器人
ROS2:从初识到深入,探索机器人操作系统的进化之路
【11月更文挑战第4天】ROS2的学习过程和应用,介绍DDS系统的框架和知识。

推荐镜像

更多